您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 129-141.doi: 10.6040/j.issn.1672-3961.0.2024.265

• 土木工程 • 上一篇    

预制节段拼装桥墩塑性铰性能

谢裕鹏,熊二刚*,李思锋,刘丰玮,王尚   

  1. 长安大学建筑工程学院, 陕西 西安 710061
  • 发布日期:2025-12-22
  • 作者简介:谢裕鹏(1999— ),男,河南漯河人,博士研究生,主要研究方向为工程结构抗震. E-mail: xie_yu_peng99@163.com. *通信作者简介:熊二刚(1980— ),男,湖北麻城人,教授,博士生导师,博士,主要研究方向为工程结构抗震. E-mail: x-e-g@163.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(51808046);陕西省自然科学基础研究计划资助项目(2025JC-YBMS-390);中央高校基本科研业务费专项资金-长安大学优秀博士学位论文培育资助项目(300102285727)

Plastic hinge length study of prefabricated segmental assembled bridge piers

XIE Yupeng, XIONG Ergang*, LI Sifeng, LIU Fengwei, WANG Shang   

  1. XIE Yupeng, XIONG Ergang*, LI Sifeng, LIU Fengwei, WANG Shang(College of Architecture and Engineering, Chang'an University, Xi'an 710061, Shaanxi, China
  • Published:2025-12-22

摘要: 基于“等同现浇”设计原则,系统探究2种不同连接方式的预制节段拼装桥墩塑性铰性能。以4个预制拼装桥墩的试验研究为基础,搜集汇总国内外共66个矩形或方形截面混凝土墩柱试验数据,分析墩柱高度、加载方向截面高度、材料特性、配筋率和轴压比对塑性铰长度的影响,并对现有塑性铰长度公式进行评估,提出适用于预制节段拼装桥墩的塑性铰长度计算公式,并采用解析法验证了其可行性。结果表明,塑性铰长度随着墩柱高度、加载方向截面高度、纵筋屈服强度、纵筋直径和配筋率的增大而增长,随着轴压比的增大而减小。本研究提出的公式适用于计算预制节段拼装桥墩的塑性铰长度。

关键词: 预制节段拼装桥墩, 新型连接, 塑性铰长度, 变形能力, 拟静力试验

Abstract: In order to investigate the plastic hinge performance of precast segmental piers with two different connection methods based on the "cast-in-place" principle, a total of 66 concrete piers with rectangular or square cross-sections at home and abroad were collected and assembled based on the experimental studies of four precast piers. The effects of pier height, section height in the loading direction, material properties, reinforcement ratio, and axial compression ratio on the plastic hinge length were analyzed and the existing plastic hinge length formulae were evaluated. The formula of plastic hinge length suitable for precast segmental assembled piers was proposed, and its feasibility was verified by analytical method. The results indicated that the plastic hinge length increases with the increase of the pier height, section height, yield strength, and diameter of longitudinal bars and reinforcement ratio, and decreases with the increase of the axial compression ratio; and the formula proposed in this paper was suitable for the calculation of the plastic hinge length of precast segmental assembled pier.

Key words: prefabricated segmental assembled piers, new connection, plastic hinge length, deformation capacity, pseudo-static test

中图分类号: 

  • TU375
[1] BISKINIS D, FARDIS M N. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars[J]. Structural Concrete, 2010, 11(2): 93-108.
[2] BISKINIS D, FARDIS M N. Effect of lap splices on flexural resistance and cyclic deformation capacity of RC members[J]. Beton-und Stahlbetonbau, 2007, 102(Suppl.1): 51-59.
[3] KOROGLU M A, ARSLAN M H, KOREZ M K. Use of regression analysis in determining the length of plastic hinge in reinforced concrete columns[J]. International Journal of Civil and Environmental Engineering, 2014, 8(4): 401-406.
[4] 陈子毅, 弓俊青, 郭春红. 桥梁墩柱的等效塑性铰长度分析研究[C] //全国建筑物检测鉴定与加固改造第十二届学术交流会论文集. 广州, 中国:[s.n.] , 2014: 332-336.
[5] 仇建磊, 张艳青, 贡金鑫. 钢筋混凝土柱等效塑性铰长度计算研究[J]. 大连理工大学学报, 2017, 57(6): 585-592. QIU Jianlei, ZHANG Yanqing, GONG Jinxin. Study of evaluation of equivalent plastic hinge length of reinforced concrete columns[J]. Journal of Dalian University of Technology, 2017, 57(6): 585-592.
[6] 邵光强, 刘开, 蒋丽忠, 等. 高速铁路桥墩等效塑性铰长度研究[J]. 铁道工程学报, 2017, 34(7): 53-59. SHAO Guangqiang, LIU Kai, JIANG Lizhong, et al. Study of plastic hinge length in high-speed railway bridge piers[J]. Journal of Railway Engineering Society, 2017, 34(7): 53-59.
[7] 周建, 李建中. 铁路圆端形空心墩位移能力与等效塑性铰长度分析[J]. 铁道科学与工程学报, 2019, 16(11): 2748-2758. ZHOU Jian, LI Jianzhong. Analysis of displacement capacity and equivalent plastic hinge length of hollow piers with rounded rectangular cross section in railways [J]. Journal of Railway Science and Engineering, 2019, 16(11): 2748-2758.
[8] BILLAH A H M M, SHAHRIA ALAM M. Plastic hinge length of shape memory alloy(SMA)reinforced concrete bridge pier[J]. Engineering Structures, 2016, 117: 321-331.
[9] CHAN Y C. A plastic hinge length model for evaluating force-displacement characteristics of reinforced concrete columns[D]. Hong Kong,China: The Hong Kong University of Science and Technology, 2018: 65-74.
[10] REN L, FANG B, WANG K, et al. Numerical investigation on plastic hinge length of ultra-high performance concrete column under cyclic load[J]. Journal of Earthquake Engineering, 2022, 26(3): 1281-1299.
[11] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model[J]. Journal of Bridge Engineering, 2019, 24(3): 04018124.
[12] YE Y X, WANG Z B, YANG Z H, et al. Seismic performance test research on a new type of replaceable energy-consuming joint column[J]. Soil Dynamics and Earthquake Engineering, 2023, 166: 107786.
[13] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge models[J]. Journal of Bridge Engineering, 2019, 24: 04018124.
[14] PARK R, PRIESTLEY M N, GILL W D. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, 1982, 108(4): 929-950.
[15] ALEMDAR Z F. Plastic hinging behavior of reinforced concrete bridge columns[D]. Lawrence,USA: University of Kansas, 2010: 9-46.
[16] TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Christchurch, New Zealand: University of Canterbury, 1990: 269-283.
[17] BAYRAK O, SHEIKH S A. High-strength concrete columns under simulated earthquake loading[J]. Structural Journal, 1997, 94(6): 708-722.
[18] BAYRAK O. Seismic performance of rectilinearly confined high strength concrete columns[D]. Toronto,Canada: University of Toronto, 1998: 126-149.
[19] BAE S. Seismic performance of full-scale reinforced concrete columns[D]. Austin, USA: The University of Texas at Austin, 2005.
[20] WATSON S, PARK R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1825-1849.
[21] SHEIKH S A, KHOURY S S. Confined concrete columns with stubs[J]. ACI Structural Journal, 1993, 90(4): 414-414.
[22] SHEIKH S A, SHAH D V, KHOURY S S. Confinement of high-strength concrete columns[J]. ACI Structural Journal, 1994, 91: 100-111.
[23] 房麟. 钢筋混凝土空心墩抗震性能试验研究[D]. 成都: 西南交通大学, 2016: 38-56. FANG Lin. Experimental study on the seismic performance of reinforced concrete hollow piers[D]. Chengdu: Southwest Jiaotong University, 2016: 38-56.
[24] ELWOOD K J, EBERHARD M O. Effective stiffness of reinforced concrete columns[J]. ACI Structural Journal, 2009, 106(4): 476-484.
[25] 中华人民共和国交通运输部.公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
[26] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John Wiley & Sons, 1992.
[27] MANDER J B. Seismic design of bridge piers[D]. Christchurch, New Zealand: The University of Can-terbury, 1983: 412-459.
[28] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading[J]. Structural Journal, 1987, 84(1): 61-76.
[29] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135-148.
[30] 孙治国, 王东升, 郭迅, 等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报, 2011, 24(5): 56-64. SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. Chinese Journal of Highways, 2011, 24(5): 56-64.
[1] 郑衍磊,徐龙伟,张汉玉,王桂梅,付涛. UHPC加固钢筋混凝土方形桥墩抗震性能参数分析[J]. 山东大学学报 (工学版), 2025, 55(3): 128-140.
[2] 许英东,崔言继,朱志鑫,任晓倩,陈帅,张朋,付涛. 配置HTRB600E高强钢筋装配式圆形桥墩的抗震性能[J]. 山东大学学报 (工学版), 2023, 53(3): 104-112.
[3] 付涛,朱志鑫,孟凌霄,孙中华,朱经纬. 中空夹层预制装配式桥墩的抗震性能[J]. 山东大学学报 (工学版), 2022, 52(4): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!