您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 128-140.doi: 10.6040/j.issn.1672-3961.0.2024.168

• 土木工程 • 上一篇    

UHPC加固钢筋混凝土方形桥墩抗震性能参数分析

郑衍磊1,徐龙伟2,张汉玉1,王桂梅2,付涛2*   

  1. 1.山东省路桥集团有限公司, 山东 济南 250014;2.山东建筑大学交通工程学院, 山东 济南 250101
  • 发布日期:2025-06-05
  • 作者简介:郑衍磊(1982— ),男,山东东平人,高级工程师,主要研究方向为桥梁道路施工等. E-mail:487897205@qq.com. *通信作者简介:付涛(1981— ),男,山东潍坊人,教授,硕士生导师,博士,主要研究方向为桥梁结构抗震与耐久性. E-mail:greenvillage_17@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2021ME227);山东省交通运输科技计划资助项目(2024B90)

The seismic performance parameter analysis of reinforced concrete square bridge piers strengthened with UHPC

ZHENG Yanlei1, XU Longwei2, ZHANG Hanyu1, WANG Guimei2, FU Tao2*   

  1. ZHENG Yanlei1, XU Longwei2, ZHANG Hanyu1, WANG Guimei2, FU Tao2*(1. Shandong Luqiao Group Co., Ltd., Jinan 250014, Shandong, China;
    2. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Published:2025-06-05

摘要: 为研究超高性能混凝土(ultra-high performance concrete, UHPC)加固钢筋混凝土桥墩加固区构造参数对桥墩抗震性能的影响,基于桥墩拟静力试验结果,采用ABAQUS有限元软件建立桥墩有限元模型,基于试验数据验证桥墩有限元模型的准确性,采用控制变量法对加固层高度、加固层厚度和墩身配筋等构造参数进行分析。研究结果表明:随着加固层UHPC高度的增大,墩身塑性损伤减少,对墩身抵抗初始变形能力和抗弯承载力的提高产生了积极影响。桥墩在一定加固层厚度下对墩身的约束作用会达到饱和状态,继续增加加固层UHPC厚度对墩身损伤及各项指标不会产生明显影响。纵筋强度的增加对UHPC加固后桥墩抗震性能影响较大,较大程度地增加了桥墩的水平抗弯承载力,同时使得墩身的位移延性系数降低,不同强度纵筋桥墩骨架曲线整体发展趋势相近,等强度和等体积代换为高强度纵筋后,墩身整体刚度的退化速率延缓,桥墩弹性工作能力增强。

关键词: UHPC, 高强钢筋, 抗震加固, 拟静力试验, 参数分析

Abstract: In order to investigate the influence of the structural parameters of the reinforced concrete piers reinforced with ultra-high performance concrete(UHPC)on the seismic performance of the piers, based on the results of the proposed static test of the piers, the finite element model of the piers was established by using the ABAQUS. Based on the test data, the accuracy of the finite element model of the pier was verified, and the structural parameters such as the height of the reinforcement layer, the thickness of the reinforcement layer, and the reinforcement of the pier were analyzed using the control variable method. The results of the research showed that with the increase of the height of the reinforced layer UHPC, the plastic damage of the pier body decreased, which positively affected the improvement of the pier body's ability to resist the initial deformation and flexural load capacity. Under a certain thickness of reinforcement layer, the constraining effect of the abutment reached a saturation state, where further increasing the thickness of the UHPC reinforcement layer did not significantly affect the damage to the abutment or any related indicators. The increase in longitudinal reinforcement strength significantly impacted the seismic performance of bridge piers reinforced with UHPC, notably enhancing the pier's horizontal flexural capacity to a greater extent, while concurrently reducing the displacement ductility coefficient of the pier body. The overall development trends of bridge pier skeleton curves were similar for different strengths of longitudinal reinforcement. Substituting equal strength or equal volume with high-strength longitudinal reinforcement delayed the overall stiffness degradation of the pier body, thereby enhancing the elastic working capacity of the bridge pier.

Key words: UHPC, high-strength reinforcement, seismic strengthening, quasi-static test, parametric analysis

中图分类号: 

  • TU997
[1] 张望欣. 钢筋混凝土桥墩抗震加固方法研究[D]. 天津: 河北工业大学, 2020. ZHANG Wangxin. Study on seismic strengthening method of reinforced concrete pier[D]. Tianjin: Hebei University of Technology, 2020.
[2] 王鹏程, 许维炳, 王瑾, 等. 基于PET的灌浆套筒-预应力组合连接装配式混凝土桥墩抗震加固研究[J]. 工程抗震与加固改造, 2022, 44(3): 139-148. WANG Pengcheng, XU Weibing, WANG Jin, et al. Study on seismic strengthening method of prefabricated concrete pier with grouting sleeve connection based on PET-AS-EMD[J]. Earthquake Resistant Engineering and Retrofitting, 2022, 44(3): 139-148.
[3] 赵海松, 魏安辉, 邵江,等. 浅埋顺层偏压洞口边坡失稳机制及防治研究[J]. 现代隧道技术, 2024, 61(3): 253-265. ZHAO Haisong, WEI Anhui, SHAO Jiang, et al. Study on instability mechanism and prevention of slope instability of shallow buried bedding bias cave opening[J]. Modern Tunnelling Technology, 2024, 61(3): 253-265.
[4] FU T, WANG K, ZHU Z X, et al. Seismic performance of prefabricated square hollow section piers strengthened by jacketing using UHPC and high-strength steel[J]. Structures, 2023, 47: 449-465.
[5] KUNWAR B, MCENTEE V, PANTELIDES C P. Seismic repair of deficient and code compliant bridge wall piers[J]. Engineering Structures, 2021, 233: 111595.
[6] WANG S J, XU W B, WANG J, et al. Experimental research on anti-seismic reinforcement of fabricated concrete pier connected by grouting sleeve based on CFRP and PET materials[J]. Engineering Structures, 2021, 245: 112838.
[7] 姚琼, 宋帅, 吴刚, 等. 基于OpenSees的桥墩抗震加固方案对比研究[J]. 青岛理工大学学报, 2023, 44(5): 46-55. YAO Qiong, SONG Shuai, WU Gang, et al. Comparative study on the seismic reinforcement schemes of bridge pier based on OpenSees[J]. Journal of Qingdao University of Technology, 2023, 44(5): 46-55.
[8] YUAN W T, WANG X T, GUO A X, et al. Cyclic performance of RC bridge piers retrofitted with UHPC jackets:experimental investigation[J]. Engineering Structures, 2022, 259: 114139.
[9] 施路遥. 基于UHPC环箍约束的混凝土桥墩抗震加固研究[D]. 南京: 东南大学, 2018. SHI Luyao. Study on seismic strengthening of concrete pier based on UHPC hoop constraint[D]. Nanjing: Southeast University, 2018.
[10] GUAN D Z, CHEN Z X, LIU J B, et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone[J]. Engineering Structures, 2021, 245: 112776.
[11] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete(UHP-FRC)under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66.
[12] SHAFIEIFAR M, FARZAD M, AZIZINAMINI A. Experimental and numerical study on mechanical properties of ultra high performance concrete(UHPC)[J]. Construction and Building Materials, 2017, 156: 402-411.
[13] AL-OSTA M A, SHARIF A M, SUHOOTHI A C M, et al. Strengthening of axially and eccentrically compression loaded RC columns with UHPC jacketing system: experimental investigation and finite element modeling[J]. Engineering Structures, 2021, 245: 112850.
[14] HUNG C C, CHUEH C Y. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar[J]. Engineering Structures, 2016, 122: 108-120.
[15] YUAN W T, WANG X T, GUO A X, et al. Cyclic performance of RC bridge piers retrofitted with UHPC jackets: experimental investigation[J]. Engineering Structures, 2022, 259: 114139.
[16] 成煜, 谢剑, 于敬海. 二次受力下UHPC加固钢筋混凝土柱轴压性能试验研究[J]. 硅酸盐通报, 2019, 38(7): 2295-2301. CHENG Yu, XIE Jian, YU Jinghai. Experimental study on axial compressive behavior of RC columns strengthened by UHPC under secondary load[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2295-2301.
[17] XIE J, FU Q H, YAN J B. Compressive behaviour of stub concrete column strengthened with ultra-high performance concrete jacket[J]. Construction and Building Materials, 2019, 204: 643-658.
[18] 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范: GB 50367—2013[S]. 北京: 中国建筑工业出版社, 2014.
[19] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
[20] 国家市场监督管理总局,国家标准化管理委员会. 金塑材料 拉伸试验 第1部分:室温试验方法: GB/T228.1—2021[S]. 北京:中国标准出版社, 2021.
[21] 中华人民共和国交通运输部. 公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京: 人民交通出版社,2020.
[22] 中华人民共和国建设部.混凝土结构设计规范: GB 50010—2002[S]. 北京: 中国建筑工业出版社, 2004.
[23] SIDOROFF F. Description of anisotropic damage application to elasticity[M]. Physical Non-Linearities in Structural Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981: 237-244.
[1] 张思祥,张勇,姜伟国,袁春元,王晓阳,田利. 四分裂导线舞动特性及线路磨损规律[J]. 山东大学学报 (工学版), 2023, 53(4): 120-127.
[2] 许英东,崔言继,朱志鑫,任晓倩,陈帅,张朋,付涛. 配置HTRB600E高强钢筋装配式圆形桥墩的抗震性能[J]. 山东大学学报 (工学版), 2023, 53(3): 104-112.
[3] 付涛,朱志鑫,孟凌霄,孙中华,朱经纬. 中空夹层预制装配式桥墩的抗震性能[J]. 山东大学学报 (工学版), 2022, 52(4): 191-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!