山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 37-44.doi: 10.6040/j.issn.1672-3961.0.2023.308
• 电气工程——智慧能源专题(张恒旭教授主持) • 上一篇
王士柏1,孙树敏1,程艳1,周光奇1,关逸飞1,刘奕元1,张志谦2,张祯滨2*
WANG Shibo1, SUN Shumin1, CHENG Yan1, ZHOU Guangqi1, GUAN Yifei1, LIU Yiyuan1, ZHANG Zhiqian2, ZHANG Zhenbin2*
摘要: 为解决光储联合系统储能电池荷电状态(state of charge, SOC)超出安全边界时电池加速老化,系统运行经济性差,且系统功率动态响应速度慢的问题,依据光储联合系统的运行特性,提出一种计及SOC安全边界的光储联合系统协同控制策略,当SOC达预设边界时自动切换变流器工作模式,保证系统健康运行的同时使系统具备频率支撑能力。设计一种基于模型预测控制的虚拟同步发电机(virtual synchronous generator, VSG)策略,实现对电网的惯量支撑和负荷功率需求的快速响应。通过搭建MATLAB/Simulink光储联合系统仿真模型,对储能电池SOC越限时的功频响应特性进行对比和分析,结果表明,模型预测控制相比传统双闭环控制具有更好的动态调节性能,且电池SOC始终处于预设的安全边界内。所提方法可以有效加快光储联合系统功率响应速度,提升对电网的主动支撑能力。
中图分类号:
[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. [2] 张恒旭, 高志民, 曹永吉, 等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13. [3] NGUYENH T, YANG G, NIELSEN A H, et al. Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 997-1005. [4] 曹炜, 钦焕乘, 陆建忠, 等. 新型电力系统下虚拟同步机的定位和应用前景展望[J]. 电力系统自动化, 2023, 47(4): 190-207. CAO Wei, QIN Huancheng, LU Jianzhong, et al. Orientation and application prospect of virtual synchronous generator in new power system[J]. Automation of Electric Power Systems, 2023, 47(4): 190-207. [5] 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(增刊2): 538-545. CHEN Wenqian, XIN Xiaonan, CHENG Zhiping. Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Tran-sactions of China Electrotechnical Society, 2018, 33(Suppl.2): 538-545. [6] SHI M, CHEN H, ZHANG C, et al. A virtual synchronous generator system control method with battery SOC feedback[C] // 2018 2nd IEEE Conference on Energy Internet and Energy System Integration(EI2). Beijing, China: IEEE, 2018: 8582563. [7] 孙东磊, 赵龙, 秦敬涛, 等. 基于学习理论的含光储联合系统的输电网双层规划[J]. 山东大学学报(工学版), 2020, 50(4): 90-97. SUN Donglei, ZHAO Long, QIN Jingtao, et al. Bi-level planning of transmission network with solar-storage combination system based on learning theory[J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 90-97. [8] 邢东峰, 田铭兴. 虚拟同步发电机频率特性与储能设备容量及充放电特性的关系[J]. 电网技术, 2021, 45(9): 3582-3590. XING Dongfeng, TIAN Mingxing. Relationship between frequency characteristics of virtual synchronous generator and parameters of energy storage equipment[J]. Power System Technology, 2021, 45(9): 3582-3590. [9] WANG F, ZHANG L, FENG X, et al. An adaptive control strategy for virtual synchronous generator[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5124-5133. [10] YANG Y, ZHI P, ZHU W. A photovoltaic power fluctuation design based on moving average algorithm and supercapacitor coordinated control strategy[C] // 2022 41st Chinese Control Conference(CCC). Hefei, China: IEEE, 2022: 5159-5164. [11] 温烨婷, 戴瑜兴, 毕大强, 等. 一种电网友好型光储分布式电源控制策略[J]. 中国电机工程学报, 2017, 37(2): 464-476. WEN Yeting, DAI Yuxing, BI Daqiang, et al. A grid friendly PV/BESS distributed generation control strategy[J]. Proceedings of the CSEE, 2017, 37(2): 464-476. [12] GOLSORKHIM S, SHAFIEE Q, LU D D C, et al. A distributed control framework for integrated photovoltaic-battery based islanded microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2837-2848. [13] FU Y, CHEN Y, XIE Z, et al. Coordinated power control of photovoltaic-battery generation system based on self-synchronizing voltage source inverter[C] // IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. Singapore: IEEE, 2023: 1-6. [14] 殷勤. 基于VSG技术的光储微网控制策略研究[D].上海: 东华大学, 2023. YIN Qin. Research on control strategy of photovoltaic/battery microgrid based on VSG technology[D]. Shanghai: Donghua University, 2023. [15] 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-141. GAO Jianrui, LI Guojie, WANG Keyou, et al. Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of Electric Power Systems, 2020, 44(4): 134-141. [16] 蒋林, 秦建茹, 韩璐, 等. 基于滑模变功率跟踪的PV-VSG控制技术[J]. 太阳能学报, 2022, 43(5): 193-199. JIANG Lin, QIN Jianru, HAN Lu, et al. Control technology of PV-VSG based on sliding mode variable power tracking[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 193-199. [17] 倪泽龙, 林钰钧, 王治涛, 等. 基于模型预测的虚拟同步机控制储能调频研究[J]. 电力系统保护与控制, 2022, 50(14): 85-93. NI Zelong, LIN Yujun, WANG Zhitao, et al. Research on frequency regulation of VSG controlled energy storages based on model predictive control[J]. Power System Protection and Control, 2022, 50(14): 85-93. [18] 朱作滨, 孙树敏, 丁月明, 等. 基于储能协调自适应VSG控制策略研究[J]. 太阳能学报, 2023, 44(12): 410-419. ZHU Zuobin, SUN Shumin, DING Yueming, et al. Research on adaptive VSG control strategy based on energy storage coordination[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 410-419. [19] CHEN S, SUN Y, HOU X, et al. Quantitative parameters design of VSG oriented to transient synchronization stability[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4978-4981. [20] LIU T, CHEN A, GAO F, et al. Double-loop control strategy with cascaded model predictive control to improve frequency regulation for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3954-3967. [21] ZHENG C, DRAGICEVIC T, BLAABJERG F. Model predictive control-based virtual inertia emulator for an islanded alternating current microgrid[J]. IEEE Tran-sactions on Industrial Electronics, 2021, 68(8): 7167-7177. [22] 王松. 一种基于神经网络的光伏电源最大功率控制系统[J]. 山东大学学报(工学版), 2004, 34(4): 45-48. WANG Song. A maximum power control system of photovoltaic cells based on neural network[J]. Journal of Shandong University(Engineering Science), 2004, 34(4): 45-48. [23] 张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44(2): 86-94. ZHANG Bo, TANG Wei, CAI Yongxiang, et al. Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of Electric Power Systems, 2020, 44(2): 86-94. |
[1] | 梁启星,李彬,李志,张慧,荣学文,范永. 基于模型预测控制的四足机器人斜坡自适应调整算法与实现[J]. 山东大学学报 (工学版), 2021, 51(3): 37-44. |
[2] | 孙东磊,赵龙,秦敬涛,韩学山,杨明,王明强. 基于学习理论的含光储联合系统的输电网双层规划[J]. 山东大学学报 (工学版), 2020, 50(4): 90-97. |
[3] | 董满,刘淑琴. 基于UKF和AH法的磁悬浮人工心脏泵用锂电池SOC估计复合算法[J]. 山东大学学报(工学版), 2018, 48(2): 121-127. |
[4] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
[5] | 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114. |
[6] | 张岐松,傅钧,史朝晖,杨潇,贾春娟,黄玉龙. 荷电状态优化对风储系统供电可靠性的影响[J]. 山东大学学报(工学版), 2017, 47(6): 95-99. |
[7] | 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|