您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 8-15.doi: 10.6040/j.issn.1672-3961.0.2023.156

• 机器学习与数据挖掘 • 上一篇    

用于预测边界元弱奇异积分的新型樽海鞘-神经网络模型

李源1,2,张妮1,张艳娜1,2,刘士豪1,李学辉3   

  1. 1.河南师范大学计算机与信息工程学院, 河南 新乡453007;2.智慧商务与物联网技术河南省工程实验室, 河南 新乡453007;3.新乡市和协饲料机械制造有限公司, 河南 新乡453131
  • 发布日期:2023-12-19
  • 作者简介:李源(1989— ),女,河南新乡人,副教授,硕士生导师,博士,主要研究方向为计算力学、机器学习、边界元法. E-mail: liyuan2015097@163.com
  • 基金资助:
    河南省自然科学基金资助项目(232300421390);河南省高等学校重点科研资助项目(23A510003)

A novel salp swarm algorithm-neural network model for predicting weak singular integrals of boundary elements

LI Yuan1,2, ZHANG Ni1, ZHANG Yanna1,2, LIU Shihao1, LI Xuehui3   

  1. 1. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, Henan, China;
    2. Engineering Lab of Intelligence Business &
    Internet of Things, Henan Province, Xinxiang 453007, Henan, China;
    3. Hexie Feed Machinery Manufacturing Co., Ltd., Xinxiang 453131, Henan, China
  • Published:2023-12-19

摘要: 为解决传统奇异积分计算方案复杂、计算成本高昂的问题,提出一种构建神经网络代理模型的方法,用于在线阶段预测边界元弱奇异积分结果。从理论上探讨使用机器学习方法预测边界元奇异积分的可行性,利用离线阶段收集的边界元弱奇异积分数据作为训练样本,通过坐标空间转换法解决训练空间和预测空间不一致的问题;引入灰狼等级制位置更新方法和自适应优化策略,提出一种改进的自适应樽海鞘(improved adaptive salp swarm algorithm, IASSA)优化方法,提高神经网络模型预测精度,解决标准樽海鞘优化算法收敛速度慢、后期种群多样性差的问题。试验结果表明,基于IASSA优化的神经网络代理模型能够将预测精度提高约54.50%,IASSA的收敛速度比标准樽海鞘优化算法提高约66.67%,降低了离线阶段代理模型的训练时间。

关键词: 边界元法, 奇异积分, 神经网络, 代理模型, 优化算法

中图分类号: 

  • TP181
[1] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.
[2] CHENG A H D, CHENG D T. Heritage and early history of the boundary element method[J]. Engineering Analysis with Boundary Elements, 2005, 29(3): 268-302.
[3] FENG S Z, HAN X, LI Z, et al. Ensemble learning for remaining fatigue life prediction of structures with stochastic parameters: a data-driven approach[J]. Applied Mathematical Modelling, 2022, 101: 420-431.
[4] NIKOLOPOULOS S, KALOGERIS I, PAPADOPOULOS V. Machine learning accelerated transient analysis of stochastic nonlinear structures[J]. Engineering Structures, 2022, 257: 114020.
[5] GANTALA T, BALASUBRAMANIAM K. DPAI: a data-driven simulation-assisted-Physics learned AI model for transient ultrasonic wave propagation[J]. Ultrasonics, 2022, 121: 106671.
[6] LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis[J]. Journal of the Royal Society Interface, 2018, 15: 20170844.
[7] 陈泽彬. 基于深度学习的有限元计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN Zebin. Study of the finite element modeling and analysis based deep learning[D]. Harbin: Harbin Institute of Technology, 2020.
[8] NIE Z, JIANG H, KARA L B. Stress field prediction in cantilevered structures using convolutional neural networks[J]. Journal of Computing and Information Science in Engineering, 2020, 20(1): 011002.
[9] CHENG R, YIN X, CHEN L. Machine learning enhanced boundary element method: prediction of gaussian quadrature points[J]. Computer Modeling in Engineering & Sciences, 2022, 131(1): 445-464.
[10] 常宏宇, 朱仁传, 黄山. 基于机器学习的脉动源格林函数预报初探[J]. 海洋工程, 2020, 38(6): 131-141. CHANG Hongyu, ZHU Renchuan, HUANG Shan. Preliminary study on prediction of pulsating source Green function based on machine learning[J]. Ocean Engineering, 2020, 38(6): 131-141.
[11] HUANG S, ZHU R C A, CHANG H Y, et al. Machine learning to approximate free-surface Green's function and its application in wave-body interactions[J]. Engineering Analysis with Boundary Elements, 2021, 134: 35-48.
[12] GUO H, ZHUANG X, RABCZUK T. A deep collocation method for the bending analysis of Kirchhoff plate[J]. Computers, Materials and Continua, 2019, 59(2): 433-456.
[13] 郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题[J]. 固体力学学报, 2021, 42(3): 249-266. GUO Hongwei, ZHUANG Xiaoying. The application of deep collocation method and deep energy method with a two-step optimizer in the bending analysis of kirchhoff thin plate[J]. Acta Mechanica Solida Sinica, 2021, 42(3): 249-266.
[14] LI Y, MAO W, WANG G, et al. A general-purpose machine learning framework for predicting singular integrals in boundary element method[J]. Engineering Analysis with Boundary Elements, 2020, 117: 41-56.
[15] 李源. 弹性动力学问题的时域边界面法[D]. 长沙: 湖南大学, 2015. LI Yuan. Elastodynamic analysis with time-domain boundary face method[D]. Changsha: Hunan University, 2015.
[16] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[17] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[18] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
[19] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[20] JIANG Q H, ZHU L J, SHU C, et al. An efficient multilayer RBF neural network and its application to regression problems[J]. Neural Computing and Applications, 2022, 34: 4133-4150.
[21] XUE J, SHEN B. A novel swarm intelligence optimi-zation approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[22] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C] //MHS95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway, USA: IEEE Press, 2002: 39-43.
[23] NIU P, NIU S, LIU N, et al. The defect of the Grey Wolf optimization algorithm and its verification method[J]. Knowledge-Based Systems, 2019, 171: 37-43.
[24] SALGOTRA R, SINGH U, SINGH S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems[J]. Applied Mathematical Modelling, 2021, 89(1): 188-207.
[1] 韦修喜,陶道,黄华娟. 改进果蝇算法优化BP神经网络预测汽油辛烷值[J]. 山东大学学报 (工学版), 2023, 53(5): 20-28.
[2] 陈雷,赵耀帅,林彦,郭晟楠,万怀宇,林友芳. 交通流量预测的时间异质性图注意力网络[J]. 山东大学学报 (工学版), 2023, 53(5): 29-36.
[3] 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56.
[4] 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119.
[5] 李浩源,于景明,张桂林,张斌. 基于智能算法的光纤预制棒芯层制备工艺参数优化[J]. 山东大学学报 (工学版), 2023, 53(4): 149-156.
[6] 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148.
[7] 刘庆鑫,齐琦,贾鹤鸣,李霓. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报 (工学版), 2023, 53(4): 93-103.
[8] 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114.
[9] 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76.
[10] 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101.
[11] 孟祥飞,张强,胡宴才,张燕,杨仁明. 欠驱动船舶自适应神经网络有限时间跟踪控制[J]. 山东大学学报 (工学版), 2022, 52(4): 214-226.
[12] 黄皓,周丽华,黄亚群,姜懿庭. 基于混合深度模型的虚假信息早期检测[J]. 山东大学学报 (工学版), 2022, 52(4): 89-98.
[13] 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106.
[14] 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98.
[15] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!