您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (5): 92-101.doi: 10.6040/j.issn.1672-3961.0.2021.092

• • 上一篇    下一篇

源网协调的电力系统均匀性规划

孙东磊1,鉴庆之1,李智琦2*,韩学山2,王明强2,陈博1,付一木1   

  1. 1. 国网山东省电力公司经济技术研究院, 山东 济南 250021;2. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061
  • 出版日期:2022-10-20 发布日期:2022-10-20
  • 作者简介:孙东磊(1988— ),男,山东济南人,高级工程师,博士,主要研究方向为电力系统规划. E-mail:sdusdlei@sina.com. *通信作者简介:李智琦(1995— ),男,山东淄博人,硕士研究生,主要研究方向为电力系统规划. E-mail:zhiqi@mail.sdu.edu.cn
  • 基金资助:
    国网山东省电力公司科技资助项目(SGTYHT/18-JS-208)

Power system uniformity planning based on source network coordination

SUN Donglei1, JIAN Qingzhi1, LI Zhiqi2*, HAN Xueshan2, WANG Mingqiang2, CHEN Bo1, FU Yimu1   

  1. 1. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, Jinan 250061, Shandong, China
  • Online:2022-10-20 Published:2022-10-20

摘要: 针对大量分布式电源分散接入电网的背景下,电源、电网规划面临的问题,提出电源与电网协调均匀规划的概念。在考虑电源、电网扩建成本作为基础目标的前提下,将输电线路负载率标准差作为均匀性指标嵌入到目标函数中,建立电源、电网扩展规划的优化模型。结合粒子群优化算法(particle swarm optimization algorithm, PSO)与遗传算法(genetic algorithm, GA)的优点以及模型的特点,提出改进的结合粒子群优化-遗传混合算法对模型进行求解。基于IEEE Garver-6系统进行算例分析,验证了该模型的有效性。

关键词: 均匀规划, 源网扩展规划, 电网规划, 粒子群优化算法, 遗传算法

中图分类号: 

  • TM715
[1] 程耀华,张宁,王佳明,等.面向高比例可再生能源并网的输电网规划方案综合评价[J].电力系统自动化,2019,43(3):33-42. CHENG Yaohua, ZHANG Ning, WANG Jiaming, et al. Comprehensive evaluation of transmission network planning scheme for high proportion renewable energy integration[J]. Power System Automation, 2019, 43(3): 33-42.
[2] 赵芳,杜兆斌.敏感负荷对含新能源配网规划的影响[J].电力工程技术,2018,37(5):56-63. ZHAO Fang, DU Zhaobin. Influence of sensitive load on distribution network planning with new energy sources[J]. Power Engineering Technology, 2018, 37(5): 56-63.
[3] 蒋霖,郑倩薇,王枫,等.考虑直接负荷控制与风电不确定性的输电网扩展规划[J].电力系统保护与控制,2020,48(3):138-146. JIANG Lin, ZHENG Qianwei, WANG Feng, et al. Transmission network expansion planning considering direct load control and wind power uncertainty[J]. Power System Protection and Control, 2020, 48(3): 138-146.
[4] ZHANG D, LI J, HUI D. Coordinated control for voltage regulation of distribution network voltage regulation by distributed energy storage systems[J]. Protection & Control of Modern Power Systems, 2018, 3(1):3.
[5] 肖定垚,王承民,曾平良,等.电力系统灵活性及其评价综述[J].电网技术,2014,38(6):1569-1576. XIAO Dingyao, WANG Chengmin, ZENG Pingliang, et al. Power system flexibility and its evaluation review[J]. Power Grid Technology, 2014, 38(6): 1569-1576.
[6] 江知瀚,陈金富.计及不确定性和多投资主体需求指标的分布式电源优化配置方法研究[J].中国电机工程学报,2013,33(31):34-42. JIANG Zhihan, CHEN Jinfu. Research on optimal allocation method of distributed generation considering uncertainty and multi investor demand index[J]. Chinese Journal of Electrical Engineering, 2013, 33(31): 34-42.
[7] SILVA I J, RIDER M J, ROMERO R, et al. Transmission network expansionplanning considering uncertainty in demand[J]. IEEE Trans on Power Systems, 2006, 21(4): 1565-1573.
[8] BLUDSZUWEIT H,DOMINGUEZ-NAVARRO J A.A probabilistic method forenergy storage sizing based on wind power forecast uncertainty[J]. IEEE Trans on Power Systems, 2011, 26(3): 1651-1658.
[9] OPATHELLA C, VENKATESH B. Managing uncertainty of wind energy withwind generators cooperative[J]. IEEE Trans on Power Systems, 2013, 28(3): 2918-2928.
[10] 曹一家,王光增,曹丽华,等.基于潮流熵的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7): l-6. CAO Yijia, WANG guangzeng, CAO Lihua, et al. Self organized critical state judgment model of complex power grid based on power flow entropy[J]. Power System Automation, 2011, 35(7): 1-6.
[11] YEHESAKUL P D, DABBAGHCHI I. A topology-based algorithm for tracking network connectivity[J]. IEEE Transactions on Power Systems, 1995, 10(1): 339-346.
[12] 梁才,刘文颖,温志伟,等.电网组织结构对其自组织l临界性的影响[J].电力系统保护与控制,2010(20):6-11. LIANG Cai, LIU Wenying, WEN Zhiwei, et al. Influence of power grid organizational structure on self-organized criticality[J]. Power System Protection and Control, 2010(20): 6-11.
[13] 王安斯,罗毅,涂光瑜,等.基于事故链风险指标的输电脆弱度在线评估方法[J].中国电机工程学报,2010,30(25):44-50. WANG Ansi, LUO Yi, TU Guangyu, et al. Transmission vulnerability online assessment method based on accident chain risk index[J]. Acta of Electrical Engineering of China, 2010, 30(25): 44-50.
[14] 晁岱峰,杨军选,苏盛,等.濮阳配电网故障的自组织I临界性及其诱因[J].电网技术,201l,35(1):72-75. CHAO Daifeng, YANG Junxuan, SU Sheng, et al. Self organized criticality of Puyang distribution network fault and its causes [J]. Power Grid Technology, 201l, 35(1): 72-75.
[15] 张文亮,周孝信,印永华,等.华北-华中-华东特高压同步电网建设和安全性分析[J].中国电机工程学报,2010,30(16):1-5. ZHANG Wenliang, ZHOU Xiaoxin, YIN Yonghua, et al. Construction and security analysis of UHV synchronous power grid in North China, Central China and East China[J]. Journal of China Electrical Engineering, 2010, 30(16): 1-5.
[16] 张弘历,李华强,王羽佳,等.考虑电网脆弱性的输电网扩展规划模型[J].电测与仪表,2017,54(23):28-34. ZHANG Hongli, LI Huaqiang, WANG Yujia, et al. Transmission network expansion planning model considering grid vulnerability[J]. Electrical Measurement and Instrumentation, 2017, 54(23): 28-34.
[17] 李志,章禹,暴英凯,等.兼顾均匀性的多目标配电网重构方法[J].电力系统保护与控制,2016,44(14):69-75. LI Zhi, ZHANG Yu, BAO Yingkai, et al. Multi-objective distribution network reconfiguration based on system homogeneity[J]. Power System Protection and Control, 2016, 44(14): 69-75.
[18] 吴晨,韩海腾,祁万春,等.基于改进线路效能的电网脆弱性辨识方法研究[J].电力工程技术,2018,37(5):64-68. WU Chen, HAN Haiteng, QI Wanchun, et al. Research on power grid vulnerability identification method based on improved line efficiency[J]. Power Engineering Technology, 2018, 37(5): 64-68.
[19] 施涛,朱凌志,于若英.电力系统灵活性评价研究综述[J].电力系统保护与控制,2016,44(5):146-154. SHI Tao, ZHU Lingzhi, YU Ruoying. Overview on power system flexibility evaluation[J]. Power System Protection and Control, 2016, 44(5): 146-154.
[20] 张强,韩学山,徐建政.安全经济调度与均匀调度间关系分析[J].电力系统及其自动化学报,2005,17(2):84-89. ZHANG Qiang, HAN Xueshan, XU Jianzheng. Analysis of the relationship between safe economic dispatch and uniform dispatch[J]. Journal of Power System and Automation, 2005, 17(2): 84-89.
[21] 张尚,王涛,顾雪平,等.基于输电网结构优化的电网安全均匀调度[J].电网技术,2017,41(9):2957-2963. ZHANG Shang, WANG Tao, GU Xueping, et al. Power grid safe and uniform dispatch based on transmission network structure optimization[J]. Grid Technology, 2017, 41(9): 2957-2963.
[22] 李婷,胥威汀,刘向龙,等.含高比例可再生能源的交直流混联电网规划技术研究综述[J].电力系统保护与控制,2019,47(12):177-187. LI Ting, XU Weiting, LIU Xianglong, et al. Review on planning technology of AC/DC hybrid system with high proportion of renewable energy[J]. Power System Protection and Control, 2019, 47(12): 177-187.
[23] 潘智俊,张焰,祝达康,等.计及电网运行非均匀性的多目标输电网规划[J].电力自动化设备,2014,34(5):53-58. PAN Zhijun, ZHANG Yan, ZHU Dakang, et al. Multi objective transmission network planning considering grid operation heterogeneity[J]. Power Automation Equipment, 2014, 34(5): 53-58.
[24] 孙伟卿,王承民,张焰.考虑输电线路负载率约束和全规划周期柔性成本评估的电网规划方法[J].电网技术,2013,37(10):2985-2990. SUN Weiqing, WANG Chengmin, ZHANG Yan. Power grid planning method considering transmission line load rate constraint and flexible cost evaluation in the whole planning period[J]. Power Grid Technology, 2013, 37(10): 2985-2990.
[25] 孙伟卿,王承民,曾平良,等.电力系统均匀性评价方法与指标综述[J].电网技术,2015,39(5):1205-1212. SUN Weiqing, WANG Chengmin, ZENG Pingliang, et al. Overview of evaluation methods and indicators of power system uniformity[J]. Power Grid Technology, 2015, 39(5):1205-1212.
[26] 杨俊杰,周建中,吴玮,等.改进粒子群优化算法在负荷经济分配中的应用[J].电网技术,2005,29(2):2-4. YANG Junjie, ZHOU Jianzhong, WU Wei, et al. Application of improved particle swarm optimization algorithm in economic load distribution[J]. Power Grid Technology, 2005, 29(2): 2-4.
[27] SALAZARLECHUGA M, ROWE J E. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C] //2005 IEEE Congress on Evolutionary Computation.Edinburgh, UK: IEEE, 2005.
[28] LIU Yong, HOU Zhijian, JIANG Chuanwen, et al. Economic dispatch by a modified particle swarm optimization algorithm[J]. Relay, 2006, 34(20): 24-27.
[29] LEI Deming, WU Zhiming. Pareto archive multi-objective particle swarm optimization[J]. PR & AI, 2006, 19(4): 475-480.
[30] 吴小刚,刘宗歧,田立亭,等.基于改进多目标粒子群算法的配电网储能选址定容[J].电网技术,2014,38(12):3405-3411. WU Xiaogang, LIU Zongqi, TIAN Liting, et al. Energy storage location and capacity determination of distribution network based on improved multi-objective particle swarm optimization algorithm[J]. Grid Technology, 2014, 38(12): 3405-3411.
[31] 卢锦玲,苗雨阳,张成相,等.基于改进多目标粒子群算法的含风电场电力系统优化调度[J].电力系统保护与控制,2013,41(17):25-31. LU Jinling, MIAO Yuyang, ZHANG Chengxiang, et al. Optimal dispatch of power system with wind farm based on improved multi-objective particle swarm optimization algorithm[J]. Power System Protection and Control, 2013, 41(17): 25-31.
[32] 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
[33] 高远,丁璐,纪洁.基于遗传算法和人工神经网络算法的新型无功优化混合算法[J].电子测试,2020(13):47-49. GAO Yuan, DING Lu, JI Jie. A new hybrid reactive power optimization algorithm based on genetic algorithm and artificial neural network algorithm[J]. Electronic Testing, 2020(13): 47-49.
[34] 丁楠,陈中,胡吕龙.基于源网协同的风电并网系统双层优化调度[J].江苏电机工程,2014,33(5):6-10. DING Nan, CHEN Zhong, HU Lülong. Double level optimal scheduling of wind power grid connected system based on source network coordination[J]. Jiangsu Electrical Engineering, 2014, 33(5): 6-10.
[35] 刘鹏程,李新利.基于多种群遗传算法的含分布式电源的配电网故障区段定位算法[J].电力系统保护与控制,2016,44(2):36-41. LIU Pengcheng, LI Xinli. Fault section location algorithm of distribution network with distributed generation based on multi population genetic algorithm[J]. Power System Protection and Control, 2016, 44(2): 36-41.
[1] 孙东磊,杨思,韩学山,叶平峰,王宪,刘蕊. 高比例风电接入下计及时段间耦合旋转备用响应风险的动态经济调度方法[J]. 山东大学学报 (工学版), 2022, 52(5): 111-122.
[2] 宋修广,张营超,庄培芝,杨鹤,张海凤,王娟. 基于遗传算法的道路安定极限优化求解方法[J]. 山东大学学报 (工学版), 2021, 51(5): 1-7.
[3] 郭蓉蓉,张汝华,马信辉,郭森垚. 近交叉口路中式快速公交站点选址优化[J]. 山东大学学报 (工学版), 2021, 51(3): 61-67.
[4] 孙东磊,赵龙,秦敬涛,韩学山,杨明,王明强. 基于学习理论的含光储联合系统的输电网双层规划[J]. 山东大学学报 (工学版), 2020, 50(4): 90-97.
[5] 孙润稼,朱海南,刘玉田. 基于偏好多目标优化和遗传算法的输电网架重构[J]. 山东大学学报 (工学版), 2019, 49(5): 17-23.
[6] 顾雪平, 杨超, 梁海平, 王元博, 李少岩. 异步电网并行协调恢复策略的优化制定方法[J]. 山东大学学报 (工学版), 2019, 49(5): 9-16.
[7] 公冶小燕,林培光,任威隆. 基于Grefenstette编码和2-opt优化的遗传算法[J]. 山东大学学报 (工学版), 2018, 48(6): 19-26.
[8] 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87.
[9] 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94.
[10] 孙东磊,李山,李雪亮,韩学山,李文博,杨思. 适应源荷不确定性的参考电网区间优化方法[J]. 山东大学学报(工学版), 2017, 47(6): 26-31.
[11] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[12] 刘德宝, 吴耀华, 郭耀阳, 王艳艳. 基于串并行混合拣选策略的自动拣选系统品项分配优化[J]. 山东大学学报(工学版), 2015, 45(6): 36-44.
[13] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[14] 梁兴建, 詹志辉. 基于双模式变异策略的改进遗传算法[J]. 山东大学学报(工学版), 2014, 44(6): 1-7.
[15] 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!