您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 114-118.doi: 10.6040/j.issn.1672-3961.0.2019.670

• • 上一篇    

铅酸蓄电池全生命周期的水足迹

张瑞瑞,马逍天,洪静兰,常景彩*   

  1. 山东大学环境科学与工程学院, 山东 青岛 266237
  • 发布日期:2020-08-13
  • 作者简介:张瑞瑞(1995— ),女,山东德州人,硕士研究生,主要研究方向为生命周期评价. E-mail:zhangruirui_sdu@outlook.com. *通信作者简介:常景彩(1977— ),女,山东济南人,高级实验师,硕士生导师,博士,主要研究方向为烟气净化,过程优化与生命周期全过程影响评价等. E-mail: changjingcai@sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFF0206702);国家自然科学基金资助项目(71671105;71974113)

Water footprint of lead-acid battery throughout the whole life cycle

ZHANG Ruirui, MA Xiaotian, HONG Jinglan, CHANG Jingcai*   

  1. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • Published:2020-08-13

摘要: 为量化铅酸蓄电池从原料开采到综合回收利用的全生命周期过程产生的水足迹影响,基于生命周期评价理论的水足迹分析方法对周期过程产生的水足迹进行综合分析。使用SimaPro 8.4 软件对铅酸蓄电池制备、运输、使用、所消耗电力的生产和废旧电池回收利用过程进行水足迹影响分析,结果表明铅酸蓄电池生产制备和消耗电力的生产是两个最主要的水足迹影响过程,电池生产制备对水体富营养化、致癌性影响、淡水生态毒性和水稀缺影响显著,电力生产对酸性化和非致癌性影响有显著贡献。铜、铬、排入水体的磷酸盐和排入大气的二氧化硫等关键物质也主要来自于这两个过程。优化这两个主要过程有助于有效地减少铅酸蓄电池全生产链条的水足迹。

关键词: 铅酸蓄电池, 生命周期, 水足迹, 关键过程, 环境影响

Abstract: To quantify the water footprint impacts throughout the whole life cycle of lead-acid batteries from raw materials extraction to comprehensive recycling and reuse, a water footprint analysis based on life cycle assessment method was used to comprehensively analyze the water footprint generated by life cycle. SimaPro 8.4 software was used to analyze the water footprint impacts on lead-acid battery preparation, transportation, use, production of consumed electricity, and waste battery recycling processes. Results showed that lead-acid battery production and generation of consumed electricity were the two most important processes in water footprint analysis, among which the former had significant impact on aquatic eutrophication, carcinogens, freshwater ecotoxicity and water scarcity categories, while the latter had considerable contributions to acidification and non-carcinogens. In addition, key substances such as copper, chromium, phosphates discharged into water and sulfur dioxide to the atmosphere were mainly derived from these two processes. Optimizing these two main processes would help to reduce the water footprint of the lead-acid battery production chain effectively.

Key words: lead-acid battery, life cycle assessment, water footprint, key processes, environmental impact

中图分类号: 

  • X323
[1] JIANG Y. China's water scarcity[J]. Journal of Environmental Management, 2009, 90(11): 3185-3196.
[2] 中央政府门户网站.《2012年工业节能与综合利用工作要点》印发[EB/OL].(2012-03-28)[2019-10-27]. http://www.gov.cn/gzdt/2012-03/28/content-2101852.htm.
[3] 诸献雨. 废旧铅酸蓄电池回收及处置对策研究[J]. 资源节约与环保, 2019(8): 80. ZHU Xianyu. Research on recycling and disposal of waste lead-acid battery[J]. Resource Conservation and Environmental Protection, 2019(8): 80.
[4] BUREK P, SATOH Y, FISCHER G, et al. Water futures and solution: fast track initiative(final report)[R]. Laxenburg, Austria: IIASA(International Institute for Applied Systems Analysis), 2016.
[5] TONG Y, CAI J, ZHANG Q, et al. Life cycle water use and wastewater discharge of steel production based on material-energy-water flows: a case study in China[J]. Journal of Cleaner Production, 2019, 241: 118410.
[6] CHEN K, HUANG L, YAN B, et al. Effect of lead pollution control on environmental and childhood blood lead level in Nantong, China: an interventional study[J]. Environmental Science & Technology, 2014, 48(21): 12930-12936.
[7] CHEN L, XU Z, LIU M, et al. Lead exposure assessment from study near a lead-acid battery factory in China[J]. Science of the Total Environment, 2012, 429: 191-198.
[8] HE K, WANG S, ZHANG J. Blood lead levels of children and its trend in China[J]. Science of the Total Environment, 2009, 407(13): 3986-3993.
[9] LIU K, YANG J, LIANG S, et al. An Emission-Free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent Lead-Acid batteries[J]. Environmental Science & Technology, 2018, 52(4): 2235-2241.
[10] 黄慧. 佛山市某企业铅蓄电池生产项目职业病危害控制效果评价[J]. 广东化工, 2018, 45(5): 72-74. HUANG Hui. Evaluation of control effect on occupational hazards in the construction project of a rechargeable battery in Foshan[J]. Guangdong Chemical Industry, 2018, 45(5): 72-74.
[11] 蔡健霞, 谭阳金, 黄大宝,等. 铅酸蓄电池废水处理工艺研究进展[J]. 轻工科技, 2019, 35(4): 98-100. CAI Jianxia, TAN Yangjin, HUANG Dabao, et al. Research progress of lead-acid battery wastewater treatment process[J]. Light Industry Science and Technology, 2019, 35(4): 98-100.
[12] KLOPFFER W. Peer(expert)review in lca according to setac and iso 14040[J]. The International Journal of Life Cycle Assessment, 1997, 7(4): 183-184.
[13] ISO(International Organization for Standardization). ISO 14046: environmental management: water footprint: principles, requirements and guidelines[EB/OL].(2014-08)[2019-10-27]. https://www.iso.org/standard/43263.html.
[14] MA X, YANG D, SHEN X, et al. How much water is required for coal power generation: an analysis of gray and blue water footprints[J]. Science of the Total Environment, 2018, 636: 547-557.
[15] MA X, YE L, QI C, et al. Life cycle assessment and water footprint evaluation of crude steel production: a case study in China[J]. Journal of Environmental Management, 2018, 224: 10-18.
[16] YANG D, YIN Y, MA X, et al. Environmental improvement of lead refining: a case study of water footprint assessment in Jiangxi Province, China[J]. The International Journal of Life Cycle Assessment, 2019, 24: 1533-1542.
[17] MA X, SHEN X, QI C, et al. Energy and carbon coupled water footprint analysis for Kraft wood pulp paper production[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 253-261.
[18] ISO(International Organization for Standardization). ISO 14040: 2006: environmental management: life cycle assessment: principles and framework [EB/OL].(2006-07)[2019-10-29]. https://www.iso.org/standard/37456.html.
[19] ISO(International Organization for Standardization). ISO 14044: 2006: environmental management: life cycle assessment: requirements and guidelines [EB/OL].(2006-07)[2019-10-29]. https://www.iso.org/standard/38498.html.
[20] HUIJBREGTS M, HAUSCHILD M, JOLLIET O, et al. USEtoxTM user manual[J]. The International Journal of Life Cycle Assessment, 2010(12): 5-23.
[21] HUIJBREGTS M, STEINMANN Z, ELSHOUT P, et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level[J]. The International Journal of Life Cycle Assessment, 2017, 22(2): 138-147.
[22] CPLCID(Chinese Process-based Life Cycle Inventory Database). 中国生命周期清单基础数据库[EB/OL]. [2019-10-29]. http://www.huanke.sdu.edu.cn/info/1289/3538.htm.
[1] 杨冬璐,马逍天,洪静兰. 基于生命周期评价的造纸废水的水足迹[J]. 山东大学学报 (工学版), 2019, 49(3): 114-119, 128.
[2] 王艳,沈晓晶. 基于生命周期模型的海洋元数据研究及应用[J]. 山东大学学报 (工学版), 2019, 49(3): 15-21.
[3] 王晓伟 李剑峰 李方义 王黎明. 机电产品生命周期评价指标与量化方法研究[J]. 山东大学学报(工学版), 2009, 39(5): 73-78.
[4] 李方义,李剑峰,段广洪,李建志 . 面向绿色设计的产品AHP生命周期环境影响评价模型[J]. 山东大学学报(工学版), 2008, 38(5): 57-61 .
[5] 黄玉,王剑 . 无线传感器网络中的能量分布[J]. 山东大学学报(工学版), 2006, 36(6): 42-45 .
[6] 姜峰,李青海,李剑峰,李方义,魏宝坤 . 基于LCA法的包装材料环境友好性的评价[J]. 山东大学学报(工学版), 2006, 36(6): 10-13 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!