山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 108-113.doi: 10.6040/j.issn.1672-3961.0.2019.175
• 化学与环境 • 上一篇
肖方1, 黄德毅2, 岳钦艳3*, 许醒3, 高宝玉3, 王文刚4
XIAO Fang1, HUANG Deyi2, YUE Qinyan3*, XU Xing3, GAO Baoyu3, WANG Wengang4
摘要: 制备新型免烧型Fe0/C功能材料作为微电解反应器的填料处理丙烯腈废水。考察反应器进水丙烯腈废水的pH值、水力停留时间(hydraulic retention time, HRT)和曝气量等因素对丙烯腈降解效率的影响,并明确反应器的最佳运行参数;结合反应器的连续运行工况,考察制备的Fe0/C复合材料的稳定性及抗板结性能。结果表明,制备出的Fe0/C复合材料具有较好的强度,可以满足微电解填料应用于水处理的要求。最佳运行工况下,Fe0/C复合材料对化学需氧量CODCr和丙烯腈的去除效率可达65.8%和70.4%。反应器在连续运行过程中出水稳定;Fe0/C复合材料在反应器运行过程的稳定性良好,没有发生板结。
中图分类号:
[1] 张凯, 唐景春, 吴颖, 等. 丙烯腈废水及几种处理工艺出水的毒性[J]. 环境工程学报, 2014, 8(7): 2809-2816. ZHANG Kai, TANG Jingchun, WU Ying, et al. Toxicity of acrylonitrile wastewater and several effluents from different treatment processes[J].Chinese Journal of Environmental Engineering, 2014, 8(7): 2809-2816. [2] LAI Bo, ZHOU Yuexi, QIN Hongke, et al. Pretreatment of wastewater from acrylonitrile—butadiene—styrene(ABS)resin manufacturing by microelectrolysis[J]. Chemical Engineering Journal, 2012, 179: 1-7. [3] BEHL M, ELMORE S A, MALARKEY D E, et al. Perinatal toxicity and carcinogenicity studies of styrene-acrylonitrile trimer, a ground water contaminant[J]. Toxicology, 2013, 314(1): 84-94. [4] JIN Yang, YUE Qinyan, YANG Kunlun, et al. Pre-treatment of pyridine wastewater by new cathodic—anodic-electrolysis packing[J]. Journal of Environmental of Sciences, 2018, 63: 43-49. [5] ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402-410. [6] ZHENG Dongju, CAI Weibin, WANG Tao, et al. Pilot-scale integrated membrane system for the treatment of acrylonitrile wastewater[J]. Desalination, 2015, 357: 215-224. [7] 沈筱彦, 苑丹丹. 丙烯腈废水处理技术研究进展[J]. 化工科技, 2016, 24(3): 76-80. SHEN Xiaoyan, YUAN Dandan. Summarization of several methods applied to acrylonitrile wastewater treatment[J]. Science & Technology in Chemical Industry, 2016, 24(3): 76-80. [8] 褚兆晶, 徐婷, 郭景, 等. 电化学氧化处理丙烯腈废水及对可生化性的提高[J]. 生态环境学报, 2010, 19(8): 1956-1959. CHU Zhaojing, XU Ting, GUO Jing, et al. The improvement of acrylonitrile wastewater biodegradability by means of electrochemical oxidation[J]. Ecology and Environment Sciences, 2010, 19(8):1956-1959. [9] 张默贺, 叶正芳, 赵泉林, 等. 铁碳微电解预处理TNT红水[J]. 环境工程学报, 2012, 6(9): 3115-3120. ZHANG Mohe, YE Zhengfang, ZHAO Quanlin, et al. Pretreatment of TNT red water by iron-carbon micro-electrolysis process[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3115-3120. [10] AO Lianggen, XIA Fan, REN Yang, et al. Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon[J]. Chemical Engineering Journal, 2019, 357: 180-187. [11] NA Chunhong, ZHANG Ying, DENG Minjie, et al. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank(A/O-ABFT)process: acute toxicity and zebrafish embryo toxicity[J]. Chemosphere, 2016, 154: 1-7. [12] 朱泉雯. 铁碳微电解法在废水预处理过程中的应用现状及前景[J]. 科技资讯, 2011, 2: 118-118. ZHU Quanwen. Application status and prospect of Fe/C microelectrolysis in wastewater pretreatment[J]. Science & Technology Information, 2011, 2: 118-118. [13] 陈松鹤. 微电解在工业废水处理中研究进展[J]. 广东化工, 2019, 46(8): 118-119. CHEN Songhe. Review of micro-electrolysis in industrial wastewater treatment[J]. Guangdong Chemical Industry, 2019, 46(8): 118-119. [14] 周培国, 傅大放. 微电解工艺研究进展[J]. 环境污染治理技术与设备, 2001, 2(4): 18-24. ZHOU Peiguo, FU Dafang. Application and development for microelectrolysis technology[J]. Techniques and Equipment for Environmental Pollution Control, 2001, 2(4): 18-24. [15] HUANG Deyi, YUE Qinyan, FU Kaifang, et al. Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers[J]. Desalination & Water Treatment, 2016, 57(10): 4420-4428. [16] 张晓伟. 微电解陶粒在染料模拟废水处理方面的应用[D]. 济南:山东大学, 2013. ZHANG Xiaowei. Application of the micro-electrolysis ceramics on treatment of synthetic dye waste water[D]. Jinan: Shandong University, 2013. [17] 张晓伟, 岳钦艳, 吴苏青, 等. 阴阳陶粒在酸性大红GR模拟废水处理中的应用[J]. 工业水处理, 2013, 33(4): 51-54. ZHANG Xiaowei, YUE Qinyan, WU Suqing, et al. Application of Fe0/C/clay ceramics to the treatment of simulated Acid scarlet GR wastewater[J]. Industrial Water Treatment, 2013, 33(4): 51-54. [18] ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402-410. [19] 张晓伟, 岳钦艳, 岳东亭, 等. Fe0-C-Clay陶粒用于亚甲基蓝模拟废水处理的研究[J]. 环境工程, 2013, 31(4): 13-16,84. ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of novel micro-electrolysis fillers: Fe0-C-Clay ceramicite in the treatment of methylene blue simulated wastewater[J]. Environmental Engineering, 2013, 31(4): 13-16,84. [20] 韩严和, 武梦雨, 李菡, 等. 铁碳微电解处理染料污水的影响因素筛选与优化[J]. 环境科学研究, 2016, 29(8): 1180-1186. HAN Yanhe, WU Mengyu, LI Han, et al. Factor screening and response surface optimization of the treatment of dye wastewater using iron-carbon micro-eElectrolysis[J]. Research of Environmental Sciences, 2016, 29(8): 1180-1186. [21] 王宇峰, 俞言文, 杨尚源, 等. 铁碳微电解耦合芬顿高级氧化技术对高盐废水COD去除性能的影响研究[J]. 水处理技术, 2017, 43(6): 65-67. WANG Yufeng, YU Yanwen, YANG Shangyuan, et al. Effect of iron-carbon micro-electrolysis coupled with fenton oxidation technology on COD removal performance in high salinity wastewater[J]. Technology of Water Treatment, 2017, 43(6): 65-67. [22] 周立峰, 费学宁, 李婉晴, 等. 铁碳微电解预处理制药废水的实验研究[J]. 环境科学与管理, 2010, 35(5): 101-102. ZHOU Lifeng, FEI Xuening, LI Wanqing, et al. Pretreatment of high concentration of pharmaceutical wastewater by iron-carbon micro-electrolysis[J]. Environmental Science and Management, 2010, 35(5): 101-102. |
[1] | 李发站,张帅,张建,梁爽. C-CBR一体化生物反应器处理农村生活污水研究[J]. 山东大学学报(工学版), 2018, 48(1): 124-130. |
[2] | 刘艳璞 施来顺 巴换粉 郭芳. 等离子体引发接枝聚合丙烯腈对聚乙烯表面改性的研究[J]. 山东大学学报(工学版), 2009, 39(5): 124-127. |
|