您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 46-51.doi: 10.6040/j.issn.1672-3961.0.2019.475

• • 上一篇    

分数阶Brussel系统混沌同步的三种控制方案

程春蕊   

  1. 郑州航空工业管理学院数学学院, 河南 郑州 450015
  • 发布日期:2020-08-13
  • 作者简介:程春蕊(1980— ),女,山东曹县人,讲师,理学硕士,主要研究方向为分数阶混沌系统. E-mail:chengzi0911@163.com
  • 基金资助:
    国家自然科学基金项目(NSFC1501525)

Three control schemes of chaos synchronization for fractional-order Brussel system

CHENG Chunrui   

  1. College of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou 450015, Henan, China
  • Published:2020-08-13

摘要: 基于分数阶微积分理论,提出三种同步控制方案使分数阶Brussel系统的误差系统收敛到平衡点。第一种控制方案通过设计适当的控制器,利用Mittag-Leffler函数得到误差系统的收敛性。第二种控制方案引入了分数阶的滑模面,利用分数阶Lyapunov 稳定性理论和滑模控制方法,得到分数阶Brussel主从系统的混沌同步。第三种控制方案充分考虑系统的不确定性和外部扰动,设计一个新型趋近律,利用分数阶终端滑模控制方法使误差系统快速收敛到平衡点。研究表明,选取适当的控制器,分数阶主从Brussel系统可以达到混沌同步。通过数值算例说明所提出的三种控制策略的有效性和适用性,并验证了本研究的理论结果。

关键词: Brussel系统, 分数阶, 混沌同步, Mittag-Leffler函数, 终端滑模

Abstract: Based on the fractional calculus theory, three synchronous control schemes were proposed to make the error system of the fractional Brussel system converge the error system states to the equilibrium point. An appropriate controller was designed in the first control scheme and the convergence of the error system was obtained by using Mittag-Leffler function. In the second control scheme, the fractional sliding mode surface was introduced, and the chaos synchronization of the fractional order Brussel master-slave systems was achieved based on the fractional version of the Lyapunov stability and the sliding mode control method. The effects of model uncertainties and external disturbances were fully taken into account in the third control scheme. A new sliding mode reaching law was designed and the fast convergence of the error system to the equilibrium point was obtained based on fractional order terminal sliding mode control. It was proved that master-slave systems were chaos synchronization under proper controllers. Numerical simulations were presented to illustrate the effectiveness and applicability of the proposed schemes and to validate the theoretical results of the paper.

Key words: Brussel system, fractional-order, chaos synchronization, Mittag-Leffler function, terminal slding mode

中图分类号: 

  • O482.4
[1] 马莉. Brussel系统的稳定性分析与动力学行为研究[J]. 自动化与仪器仪表,2016,21(7):73-75. MA Li. The stability analysis and dynamic behavior research of Brussel systems[J].Automation and Instrumentation, 2016, 21(7):73-75.
[2] 马莉. Brussel模型的混沌控制[J]. 电气自动化,2015,37(5):17-19. MA Li. Chaos control of Brussel model [J]. Electric Automatization, 2015, 37(5):17-19.
[3] MANDELBROT B B, VAN NESS J W. Fractional Brownian motions, fractional noises and applications[J]. Siam Review, 1968, 10(4):422-437.
[4] HAMAMCI, KOLKSAL M. Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems[J]. Comput Math Appl, 2010, 52(2):1267-1278.
[5] MATOUK A. Chaos feedback and synchronization of fractional-order modified autonomous Van der pol-Duffling circuit[J]. Commun Nonlinear Sci Numer Simul, 2011, 46(5):975-986.
[6] MOHAMMAD P A. Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory[J]. Journal of Computation and Nonlinear Dynamic, 2012, 32(7):1011-1015.
[7] MILAD M, HADI D. Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J].International Journal of Dynamics and Control, 2017, 5(1):124-134.
[8] DELAVARI H, GHADERI R, RANJBAR A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4):963-978.
[9] 毛北行,李巧利.一类分数阶 Duffling-Van der pol 系统的混沌同步[J]. 吉林大学学报(理学版),2016,54(2):369-373. MAO Beixing, LI Qiaoli. Chaos synchronization of a class of fractional-order Duffling-Van der pol systems[J]. Journal of Jilin University(Science Edition), 2016, 54(2):369-373.
[10] 王悍枭,刘凌,吴华伟.改进型滑模观测器的永磁同步电机无传感器控制策略[J]. 西安交通大学报,2016, 50(6):104-109. WANG Hanniao, LIU Ling, WU Huawei. A senseless permanent magnet synchronous motor control strategy for improved sliding mode observers with stator parameters identification[J]. Journal of Xi'an Jiaotong University, 2016, 50(6):104-109.
[11] 毛北行,王东晓.分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版),2017,47(3):79-83. MAO Beixing, WANG Dongxiao. Sliding mode chaos synchronization control of a class of fractional-order multi-scroll systems[J]. Journal of Shandong University(Engineering Science), 2017, 47(3):79-83.
[12] DADRAS S, MOMENI H R. Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1):367-377.
[13] 徐瑞萍, 高明美. 自适应终端滑模控制不确定混沌系统的同步[J]. 控制工程, 2016, 23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic systems with uncertainty using an adaptive terminal sliding mode controller[J]. Control Engineering of China, 2016, 23(5):715-719.
[14] MOHAMMAD P A, SOHRAB K, GHASSEM A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091.
[15] 王战伟, 张伟, 毛北行. 分数阶Brussel混沌系统终端滑模控制[J]. 重庆师范大学学报(自然版), 2018,35(2): 100-103. WANG Zhanwei, ZHANG Wei, MAO Beixing. Terminal sliding mode synchronization control of fractional-order Brussel systems[J]. Journal of Chongqing Normal university(Science Edition), 2018, 35(2):100-103.
[16] PODLUBNY. Fractional differential equation[M]. San Diego, USA: Academic Press, 1999:715-719.
[17] 梅生伟, 申铁龙, 刘康志. 现代鲁棒控制理论与应用[M]. 北京:清华大学出版社, 2003.
[18] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17(2):101-127.
[19] BAGLEY R L, TORYIK P J. On the appearance of the fractional derivative in the behavior of real materials[J]. Journal of Applied Mechanics, 1984, 51(4): 294-298.
[1] 王春彦,邸金红,毛北行. 基于新型趋近律的参数未知分数阶Rucklidge系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(4): 40-45.
[2] 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72.
[3] 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报 (工学版), 2018, 48(5): 85-90.
[4] 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报 (工学版), 2018, 48(5): 91-94, 123.
[5] 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115.
[6] 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60.
[7] 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36.
[8] 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83.
[9] 梁秋实,赵志诚. 基于分数阶滑模观测器的BLDCM无位置传感器控制[J]. 山东大学学报(工学版), 2017, 47(3): 96-101.
[10] 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88.
[11] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53.
[12] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
[13] 赵以阁, 王玉振. 分数阶非线性三角系统的状态反馈控制器设计[J]. 山东大学学报(工学版), 2015, 45(6): 29-35.
[14] 赵志涛,赵志诚,王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报 (工学版), 2015, 45(5): 58-62.
[15] 王惠芳, 赵志诚, 张井岗. 一种高阶系统的分数阶IMC-IDμ控制器设计[J]. 山东大学学报(工学版), 2014, 44(6): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!