山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 74-81.doi: 10.6040/j.issn.1672-3961.0.2018.208
Kuo PANG(),Siqi CHEN,Xiaoying SONG,Li ZOU*()
摘要:
针对具有语言值信息的决策问题,结合语言术语集和信息系统,提出语言决策信息系统和语言概念,并讨论语言概念的相关性质。通过转化语言决策信息系统,提出语言概念决策形式背景。为扩展语言概念格的内涵和外延,压缩语言概念的规模,通过将语言概念粒化,提出粒化语言概念决策形式背景。将粒计算引入到粒化语言概念决策形式背景中,利用覆盖度与置信度,构造一种基于粒计算的语言概念决策形式背景的规则提取模型。医学诊断实例表明该方法在获取高质量规则中的有效性及实用性。
中图分类号:
1 | WILLE R . Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Orderd Sets D Reidel, 1982, 83, 314- 339. |
2 | GANTRER B . Formal concept analysis: mathematical foundations[M]. New York, USA: Springer-Verlag New York, Inc., 1999. |
3 | KANG Xiangping , LI Deyu , WANG Suge , et al. Formal concept analysis based on fuzzy granularity base for different granulations[J]. Fuzzy Sets and Systems, 2012, 203 (21): 33- 48. |
4 | YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C]//International Conference on Rough Sets and Current Trends in Computing. Berlin Heidelberg, Germany: Springer, 2004: 59-68. |
5 | LI Jinhai , HUANG Chenchen , QI Jianjun . Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378 (1): 244- 263. |
6 |
QIAN T , WEI L , QI J . Constructing three-way concept lattices based on apposition and subposition of formal contexts[J]. Knowledge-Based Systems, 2017, 116, 39- 48.
doi: 10.1016/j.knosys.2016.10.033 |
7 | QI J , QIAN T , WEI L . The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91 (C): 143- 151. |
8 |
KONECNY J , KRIDLO O . On biconcepts in formal fuzzy concept analysis[J]. Information Sciences, 2017, 375, 16- 29.
doi: 10.1016/j.ins.2016.09.042 |
9 | ALCALDE C , BURUSCO A . The use of two relations in L-fuzzy contexts[M]. Amsterdam, Netherlands: Elsevier Science Inc., 2015. |
10 |
LI J , REN Y , MEI C , et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91, 152- 164.
doi: 10.1016/j.knosys.2015.07.024 |
11 | ZHI H , LI J . Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104 (1): 62- 73. |
12 | KANG Xiangping , MIAO Duoqian . A study on information granularity in formal concept analysis based on concept-bases[M]. Amsterdam, Netherlands: Elsevier Science Publishers B. V., 2016. |
13 | YAO Y . Rough-set concept analysis: interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346, 442- 462. |
14 |
ZOU L , ZHANG Z , LONG J . An efficient algorithm for increasing the granularity levels of attributes in formal concept analysis[J]. Expert Systems with Applications, 2016, 46, 224- 235.
doi: 10.1016/j.eswa.2015.10.026 |
15 |
PEI Z , RUAN D . Formal concept analysis based on the topology for attributes of a formal context[J]. Information Sciences, 2013, 236, 66- 82.
doi: 10.1016/j.ins.2013.02.027 |
16 | MEDINA J . Relating attribute reduction in formal, object-oriented and property-oriented concept lattices[J]. Computers & Mathematics with Applications, 2012, 64 (6): 1992- 2002. |
17 |
DIAS S M , VIEIRA N J . Concept lattices reduction: dDefinition, analysis and classification[J]. Expert Systems with Applications, 2015, 42 (20): 7084- 7097.
doi: 10.1016/j.eswa.2015.04.044 |
18 | 李进金, 张燕兰, 吴伟志, 等. 形式背景与协调决策形式背景属性约简与概念格生成[J]. 计算机学报, 2014, 37 (8): 1768- 1774. |
LI Jinjin , ZHANG Yanlan , WU Zhiwei , et al. Attribute reduction for formal context and consistent decision formal context and concept lattice generation[J]. Chinese Journal of Computers, 2014, 37 (8): 1768- 1774. | |
19 | ZHUA W . The fourth type of covering-based rough sets[J]. Information Sciences, 2012, 201 (19): 80- 92. |
20 | 张铃, 张钹. 模糊相容商空间与模糊子集[J]. 中国科学:信息科学, 2011, 41 (1): 1- 11. |
ZHANG Ling , ZHANG Bo . Fuzzy compatible quotient spaces and fuzzy subsets[J]. Chinese Science: Information Science, 2011, 41 (1): 1- 11. | |
21 |
WU W Z , LEUNG Y , MI J S . Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (10): 1461- 1474.
doi: 10.1109/TKDE.2008.223 |
22 | YAO Y . Interpreting concept learning in cognitive informatics and granular computing[J]. IEEE Press, 2009, 39 (4): 855- 866. |
23 | 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22 (4): 676- 694. |
WANG Guoyin , ZHANG Qinghua , MA Xi'ao , et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22 (4): 676- 694. | |
24 | 苗夺谦, 王国胤, 刘清, 等. 粒计算:过去、现在与展望[M]. 北京: 科学出版社, 2007. |
25 | 徐久成, 孙林, 张倩倩. 粒计算及其不确定信息度量的理论与方法[M]. 北京: 科学出版社, 2013. |
26 | ZADEH L A . The Concept of a Linguistic Variable and its application to approximate reasoning[J]. Inf Sci, 1974, 8 (3): 199- 249. |
27 |
WANG J H , HAO J . A new version of 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2006, 14 (3): 435- 445.
doi: 10.1109/TFUZZ.2006.876337 |
28 |
HERRERA F , MARTINEZ L . A 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (6): 746- 752.
doi: 10.1109/91.890332 |
29 | LIAO H , XU Z , ZENG X J . Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making[J]. Information Sciences, 2014, 271 (3): 125- 142. |
30 |
ZHAI Y . Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36 (2): 147- 156.
doi: 10.1080/03081070600913650 |
[1] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[2] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[3] | 崔晓松,王颖,孟佳, 邹丽. 基于语言值相似度推理的网络商家自评价方法[J]. 山东大学学报(工学版), 2018, 48(1): 1-7. |
[4] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[5] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[6] | 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70. |
[7] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[8] | 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14. |
[9] | 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22. |
[10] | 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61. |
[11] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[12] | 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27. |
[13] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[14] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[15] | 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34. |
|