您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (6): 74-81.doi: 10.6040/j.issn.1672-3961.0.2018.208

• 机器学习与数据挖掘 • 上一篇    下一篇

基于粒计算的语言概念决策形式背景分析

庞阔(),陈思琪,宋笑迎,邹丽*()   

  1. 辽宁师范大学计算机与信息技术学院, 辽宁 大连 116081
  • 收稿日期:2018-05-25 出版日期:2018-12-20 发布日期:2018-12-26
  • 通讯作者: 邹丽 E-mail:pangkuolnnu@163.com;zoulicn@163.com
  • 作者简介:庞阔(1994—),男,河北沧州人,硕士研究生,主要研究方向为智能信息处理. E-mail: pangkuolnnu@163.com
  • 基金资助:
    国家自然科学基金项目(61772250);国家自然科学基金项目(61673320);国家自然科学基金项目(61672127);中央高校基本科研业务费项目(2682017ZT12);辽宁省自然科学基金项目(2015020059)

Linguistic concept formal decision context analysis based on granular computing

Kuo PANG(),Siqi CHEN,Xiaoying SONG,Li ZOU*()   

  1. College of Computer and Information Technology, Liaoning Normal University, Dalian 116081, Liaoning, China
  • Received:2018-05-25 Online:2018-12-20 Published:2018-12-26
  • Contact: Li ZOU E-mail:pangkuolnnu@163.com;zoulicn@163.com
  • Supported by:
    国家自然科学基金项目(61772250);国家自然科学基金项目(61673320);国家自然科学基金项目(61672127);中央高校基本科研业务费项目(2682017ZT12);辽宁省自然科学基金项目(2015020059)

摘要:

针对具有语言值信息的决策问题,结合语言术语集和信息系统,提出语言决策信息系统和语言概念,并讨论语言概念的相关性质。通过转化语言决策信息系统,提出语言概念决策形式背景。为扩展语言概念格的内涵和外延,压缩语言概念的规模,通过将语言概念粒化,提出粒化语言概念决策形式背景。将粒计算引入到粒化语言概念决策形式背景中,利用覆盖度与置信度,构造一种基于粒计算的语言概念决策形式背景的规则提取模型。医学诊断实例表明该方法在获取高质量规则中的有效性及实用性。

关键词: 粒计算, 语言概念决策形式背景, 规则提取, 粒规则

Abstract:

Aiming at the decision problem with linguistic value information, combining linguistic terminology and information system, the linguistic decision information system and linguistic concept was proposed, and the related properties of linguistic concept were discussed. By transforming linguistic decision information systems, the linguistic concept formal decision context was proposed. In order to expand the intent and extent of the linguistic concept lattice, the scale of the linguistic concept was compressed, and the granular linguistic concept formal decision context was proposed by granulating the linguistic concept. The granular computing was introduced into the granular linguistic concept formal decision context, and a rule extraction model based on granular computing for linguistic concept formal decision context was constructed by using coverage and confidence. Medical diagnostic examples illustrated the effectiveness and utility of this method in obtaining high quality rules.

Key words: granular computing, linguistic concept formal decision context, rule extraction, granular rule

中图分类号: 

  • TP181

表1

肠胃感冒诊断过程中的语言决策信息系统"

U a b c d e
x1 s1 s0 s2 t1 t-1
x2 s-2 s-2 s-2 t-2 t2
x3 s2 s2 s2 t2 t-2
x4 s0 s0 s1 t0 t0
x5 s1 s2 s2 t2 t-2
x6 s-2 s2 s0 t2 t-1

表2

肠胃感冒诊断过程中的语言概念决策形式背景"

U as-2 as-1 as0 as1 as2 bs-2 bs-1 bs0 bs1 bs2 cs-2 cs-1 cs0 cs1 cs2
x1 × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 × × ×
x6 × × ×
U ds-2 ds-1 ds0 ds1 ds2 es-2 es-1 es0 es1 es2
x1 × ×
x2 × ×
x3 × ×
x4 × ×
x5 × ×
x6 × ×

表3

基于表2得到的粒化语言概念决策形式背景"

U [a]sλ1- [a]sλ1+ [b]sλ1- [b]sλ1+ [c]sλ1- [c]sλ1+ [d]tλ2- [d]tλ2+
x1 × × × ×
x2 × × × ×
x3 × × × ×
x4 × × × ×
x5 × × × ×
x6 × × × ×

表4

约简后的粒化语言概念决策形式背景"

U [a]sλ1- [a]sλ1+ [b]sλ1- [b]sλ1+ [c]sλ1- [c]sλ1+ [d]tλ2- [d]tλ2+
x1 × × × ×
x2 × × × ×
x3 × × × ×
x4 × × × ×
x5 × × × ×
1 WILLE R . Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Orderd Sets D Reidel, 1982, 83, 314- 339.
2 GANTRER B . Formal concept analysis: mathematical foundations[M]. New York, USA: Springer-Verlag New York, Inc., 1999.
3 KANG Xiangping , LI Deyu , WANG Suge , et al. Formal concept analysis based on fuzzy granularity base for different granulations[J]. Fuzzy Sets and Systems, 2012, 203 (21): 33- 48.
4 YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C]//International Conference on Rough Sets and Current Trends in Computing. Berlin Heidelberg, Germany: Springer, 2004: 59-68.
5 LI Jinhai , HUANG Chenchen , QI Jianjun . Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378 (1): 244- 263.
6 QIAN T , WEI L , QI J . Constructing three-way concept lattices based on apposition and subposition of formal contexts[J]. Knowledge-Based Systems, 2017, 116, 39- 48.
doi: 10.1016/j.knosys.2016.10.033
7 QI J , QIAN T , WEI L . The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91 (C): 143- 151.
8 KONECNY J , KRIDLO O . On biconcepts in formal fuzzy concept analysis[J]. Information Sciences, 2017, 375, 16- 29.
doi: 10.1016/j.ins.2016.09.042
9 ALCALDE C , BURUSCO A . The use of two relations in L-fuzzy contexts[M]. Amsterdam, Netherlands: Elsevier Science Inc., 2015.
10 LI J , REN Y , MEI C , et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91, 152- 164.
doi: 10.1016/j.knosys.2015.07.024
11 ZHI H , LI J . Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104 (1): 62- 73.
12 KANG Xiangping , MIAO Duoqian . A study on information granularity in formal concept analysis based on concept-bases[M]. Amsterdam, Netherlands: Elsevier Science Publishers B. V., 2016.
13 YAO Y . Rough-set concept analysis: interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346, 442- 462.
14 ZOU L , ZHANG Z , LONG J . An efficient algorithm for increasing the granularity levels of attributes in formal concept analysis[J]. Expert Systems with Applications, 2016, 46, 224- 235.
doi: 10.1016/j.eswa.2015.10.026
15 PEI Z , RUAN D . Formal concept analysis based on the topology for attributes of a formal context[J]. Information Sciences, 2013, 236, 66- 82.
doi: 10.1016/j.ins.2013.02.027
16 MEDINA J . Relating attribute reduction in formal, object-oriented and property-oriented concept lattices[J]. Computers & Mathematics with Applications, 2012, 64 (6): 1992- 2002.
17 DIAS S M , VIEIRA N J . Concept lattices reduction: dDefinition, analysis and classification[J]. Expert Systems with Applications, 2015, 42 (20): 7084- 7097.
doi: 10.1016/j.eswa.2015.04.044
18 李进金, 张燕兰, 吴伟志, 等. 形式背景与协调决策形式背景属性约简与概念格生成[J]. 计算机学报, 2014, 37 (8): 1768- 1774.
LI Jinjin , ZHANG Yanlan , WU Zhiwei , et al. Attribute reduction for formal context and consistent decision formal context and concept lattice generation[J]. Chinese Journal of Computers, 2014, 37 (8): 1768- 1774.
19 ZHUA W . The fourth type of covering-based rough sets[J]. Information Sciences, 2012, 201 (19): 80- 92.
20 张铃, 张钹. 模糊相容商空间与模糊子集[J]. 中国科学:信息科学, 2011, 41 (1): 1- 11.
ZHANG Ling , ZHANG Bo . Fuzzy compatible quotient spaces and fuzzy subsets[J]. Chinese Science: Information Science, 2011, 41 (1): 1- 11.
21 WU W Z , LEUNG Y , MI J S . Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (10): 1461- 1474.
doi: 10.1109/TKDE.2008.223
22 YAO Y . Interpreting concept learning in cognitive informatics and granular computing[J]. IEEE Press, 2009, 39 (4): 855- 866.
23 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22 (4): 676- 694.
WANG Guoyin , ZHANG Qinghua , MA Xi'ao , et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22 (4): 676- 694.
24 苗夺谦, 王国胤, 刘清, 等. 粒计算:过去、现在与展望[M]. 北京: 科学出版社, 2007.
25 徐久成, 孙林, 张倩倩. 粒计算及其不确定信息度量的理论与方法[M]. 北京: 科学出版社, 2013.
26 ZADEH L A . The Concept of a Linguistic Variable and its application to approximate reasoning[J]. Inf Sci, 1974, 8 (3): 199- 249.
27 WANG J H , HAO J . A new version of 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2006, 14 (3): 435- 445.
doi: 10.1109/TFUZZ.2006.876337
28 HERRERA F , MARTINEZ L . A 2-tuple fuzzy linguistic representation model for computing with words[J]. IEEE Transactions on Fuzzy Systems, 2000, 8 (6): 746- 752.
doi: 10.1109/91.890332
29 LIAO H , XU Z , ZENG X J . Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making[J]. Information Sciences, 2014, 271 (3): 125- 142.
30 ZHAI Y . Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36 (2): 147- 156.
doi: 10.1080/03081070600913650
[1] 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59.
[2] 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95.
[3] 崔晓松,王颖,孟佳, 邹丽. 基于语言值相似度推理的网络商家自评价方法[J]. 山东大学学报(工学版), 2018, 48(1): 1-7.
[4] 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202.
[5] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[6] 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70.
[7] 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47.
[8] 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14.
[9] 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22.
[10] 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61.
[11] 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36.
[12] 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27.
[13] 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73.
[14] 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5.
[15] 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 王静,李玉江,张晓瑾, 毕研俊,陈位锁 . 粉煤灰去除水中活性紫KN-B[J]. 山东大学学报(工学版), 2006, 36(6): 100 -103 .
[3] 王,张艳宁,申家振,刘俊成 . 基于信息测度和支持向量机的图像边缘检测[J]. 山东大学学报(工学版), 2006, 36(3): 95 -99 .
[4] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[5] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[6] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[7] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[8] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[9] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[10] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .