您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 128-136.doi: 10.6040/j.issn.1672-3961.0.2018.103

• 机器学习与数据挖掘 • 上一篇    

大气采样干燥技术除湿效果的测试与对比

赵亚楠,王新锋*,李锐,陈天舒,薛丽坤,王文兴   

  1. 山东大学环境研究院, 山东 济南 250100
  • 收稿日期:2018-03-11 出版日期:2018-08-20 发布日期:2018-03-11
  • 通讯作者: 王新锋(1985— ),男,河南洛阳人,副教授,主要研究方向为大气环境化学与大气测量技术. E-mail:xinfengwang@sdu.edu.cn E-mail:zhaoyanan1992822@163.com
  • 作者简介:赵亚楠(1991— ),女,山东菏泽人,硕士研究生,主要研究方向为大气测量技术. E-mail:zhaoyanan1992822@163.com
  • 基金资助:
    国家重点研发计划资助项目(2016YFC0200500);国家自然科学基金资助项目(41775118)

Tests and comparison of the dehumidification effectiveness of drying techniques involving in atmospheric sampling

ZHAO Yanan, WANG Xinfeng*, LI Rui, CHEN Tianshu, XUE Likun, WANG Wenxing   

  1. Environment Research Institute, Shandong University, Jinan 250100, Shangdong, China
  • Received:2018-03-11 Online:2018-08-20 Published:2018-03-11

摘要: 高湿、云雾影响大气污染物的测量结果,甚至损坏测量设备,因此在大气采样中需采用干燥技术进行除湿。测试对比了旋风切割器、加热带、Nafion干燥管、硅胶干燥管4种干燥装置的除湿效果和影响因素。结果表明,旋风切割器能有效去除液态水,主要用于痕量气体和细颗粒物;加热带快速降低样品空气的相对湿度,但波动较大,平均除湿效率约为20%~40%,用于热稳定污染物;Nafion干燥管除湿效率通常小于20%,适用于各种痕量气体和颗粒物;硅胶干燥管除湿效率稳定,在50%左右,用于颗粒物。几种干燥装置的使用均会引起痕量气体的损失,其中加热带较大,约为10%,旋风切割器和Nafion干燥管不超过10%,甚至低于5%。不同干燥技术各有其适用性和优缺点,使用时应综合考虑。

关键词: 干燥技术, 除湿效率, 大气采样, 损失, 除湿装置

Abstract: High humidity and fog water can affect the measurement results of atmospheric pollutants, or even damages the instruments. Therefore, it was necessary to dehumidify the sample air with specific drying techniques when sampling. This study tested and compared the dehumidification effectiveness and the influencing factors of four common drying devices, i.e., cyclone cutter, heating belt, Nafion drying tube, and silicone drying tube. The results showed that the cyclone cutter could effectively remove liquid water and it was suitable trace gases and fine particulate matters. The heating belt quickly reduced the relative humidity of the sample air; however, the relatively humidity exhibited large fluctuation. The average dehumidification efficiency was about 20%~40%. The heating belt was mainly suitable for the thermally stable pollutants. The dehumidification efficiency of Nafion drying tube was usually less than 20%, but it was suitable for all kinds of trace gases and particulate matters. The silica gel drying tube could quickly dry the sample air with stable and high efficiency of about 50% and it was mainly suitable for particulate matters. The use of the above drying techniques would cause a loss of trace gases in certain degree. Among them, the loss caused by heating was highest, about 10%. The loss caused by cyclone cutters and Nafion drying tubes was no more than 10% and even less than 5%. These drying devices had different applicability, advantages, and disadvantages, so it was necessary to take account into the measured component.

Key words: drying technology, dehumidifying device, dehumidification efficiency, loss, atmospheric sampling

中图分类号: 

  • X851
[1] 高继慧,马春元,吴少华,等.烟气中SO2采样测量技术的应用与改进[J].环境工程,2001,19(5):48-49.
[2] GAO Jian, WANG Tao, DING Aijun, et al. Observational study of ozone and carbon monoxide at the summit of mount Tai(1534 m asl)in central-eastern China[J].Atmospheric Environment, 2005, 39(26):4779-4791.
[3] 都小凡,钱仙妹,刘强,等.相对湿度对光声信号的影响研究[J].光学学报,2017,37(2):315-322. DU Xiaofan, QIAN Xianmei, LIU Qiang, et al. Effect of relative humidity on photoacoustic signal[J].Acta Optica Sinica, 2017, 37(2):315-322.
[4] XUE Likun, WANG Tao, ZHANG Jiamin, et al. Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China: New insights from the 2006 summer study[J].Journal of Geophysical Research Atmospheres, 2011, 116(D7):529-529.
[5] 戴安(DIONEX).大气颗粒物及部分气态前体物的连续在线观测[J].环境化学,2010, 29(2):1193-1194.
[6] HENNING S, WEINGARTNER E, SCHWIKOWSKI M, et al. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch(3580 m asl)[J]. Journal of Geophysical Research, 2003, 108(D1):ACH 8-1-ACH 8-10.
[7] YE Xingnan, CHEN Tianyi, HU Dawei, et al. A multifunctional HTDMA system with a robust temperature control[J].Advances in Atmospheric Sciences, 2009, 26(6):1235-1240.
[8] 黄正旭,高伟,董俊国,等.实时在线单颗粒气溶胶飞行时间质谱仪的研制[J].质谱学报,2010,31(6):331-336. HUANG Zhengxu, GAO Wei, DONG Junguo, et al. Development of real-time single particle aerosol time-of-flight mass spectrometer[J].Journal of Chinese Mass Spectrometry Society, 2010, 31(6):331-336.
[9] 汪淑华,郇延富,冯国栋,等. Nafion干燥器的去溶机理和日常维护[J].分析仪器,2003(1): 23-26. WANG Shuhua, HUAN Yanfu, FENG Guodong, et al. Desolvation mechanism and maintenance of Nafion dryer[J].Analytical Instrumentation, 2003(1): 23-36.
[10] HE Hui, TIE Xuexi, ZHANG Qiang, et al. Analysis of the causes of heavy aerosol pollution in Beijing, China: A case study with the WRF-Chem model[J]. Particuology, 2015, 20(3): 32-40.
[11] QUAN Jiannong, GAO Yang, ZHANG Qiang, et al. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 2013, 11(1):34-40.
[12] ZHANG Hongxing, WANG Xiaoke, FENG Zongwei, et al. Multichannel automated chamber system for continuous monitoring of CO2, exchange between the agro-ecosystem or soil and the atmosphere[J]. Acta Ecologica Sinica, 2007, 27(4):1273-1281.
[13] MURAMATSU K, SASAKI S, CHO Y, et al. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the cloud and aerosol characterization experiment(CLACE 6)[J]. Atmospheric Chemistry & Physics Discussions, 2010, 14(1): 31-36.
[14] GOURIHAR K, MIKHAIL P, ARMIN A, et al. Comparison of experimental and numerical studies of the performance characteristics of a pumped counterflow virtual impactor[J]. Aerosol Science & Technology, 2011, 45(3):382-392.
[15] SELLEGRI K, LAJ P, MARINONI A, et al. Contribution of gaseous and particulate species to droplet solute composition at the Puy de D me, France [J]. Atmospheric Chemistry & Physics, 2003, 3(1):1509-1522.
[16] 高占君, 唐大勇, 纪永艺, 等.加热型环境空气采样总管:CN98251669.X [P]. 1999-12-15.
[17] MICHAEL H, JOHN A, STEPHEN E, et al. Evaporation of ammonium nitrate aerosol in a heated nephelometer: Implications for field measurements[J]. Environmental Science & Technology, 1997, 31(10):2878-2883.
[18] SOFOWOTE U, SU Yushan, BITZOS M M, et al. Improving the correlations of ambient tapered element oscillating microbalance PM2.5 data and SHARP 5030 Federal Equivalent Method in Ontario: a multiple linear regression analysis[J]. Journal of the Air & Waste Management Association, 2014, 64(1):104-114.
[19] ANDERSON T, OGREN J. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer[J]. Aerosol Science & Technology, 1998, 29(1):57-69.
[20] 蒋雄杰,李峰. Nafion干燥器GASS处理系统在“超低排放”CEMS中的工程应用研究[J].分析仪器,2015(3): 26-33. JIANG Xiongjie,LI Feng.Research and application of GASS preconditioning system for “Itra low emission”CEMS in coal fired power plant[J].Analytical Instrumentation, 2015(3):26-33.
[21] 谢志勇.Nafion除湿技术在“超低排放”CEMS中的应用[J].科学与财富, 2016(12): 399.
[22] MEYER M B, PATASHNICK H, AMBS J L, et al. Development of a sample equilibration system for the TEOM continuous PM monitor[J]. Air Repair, 2000, 50(8):1345-1349.
[23] PLEIL J, OLIVER K, MCCLENNY W. Enhanced performance of Nafion dryers in removing water from air samples prior to gas chromatographic analysis[J]. Air Repair, 1987, 37(3): 244-248.
[24] 郭晓霜,李小滢,闫才青,等.利用单颗粒气溶胶质谱仪研究南黄海气溶胶的变化特征[J].北京大学学报,2017,53(6):1042-1052. GUO Xiaoshuang, LI Xiaoying, YAN Caiqing, et al. Changes of marine aerosol properties over the South Yellow Sea using single particle aerosol mass spectrometer[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6):1042-1052.
[25] 蔡琦.超声波加湿器的原理与维修[J].商情,2017(9): 285.
[26] 金义忠,夏黎明.在线分析样气除湿新技术的应用研究[J].分析仪器,2010(6):65-70. JIN Yizhong, XIA Liming. New techniques of sample dehumidifying for on-line gas analysis[J].Analytical Instrumentation, 2010(6): 65-70.
[1] 祁金胜,曹洪振,石岩,杜文静,王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69, 76.
[2] 林超,张程林,王勇. 预应力中空棒构件设计与力学特性[J]. 山东大学学报 (工学版), 2020, 50(5): 26-32.
[3] 魏露露,赖艳华,陆永达. 传输损失对斯特林制冷机冷量的影响[J]. 山东大学学报(工学版), 2016, 46(5): 116-119.
[4] 胡渤,王芳,高宝玉,徐世平,马宝东. 油田配聚污水水质对聚合物溶液黏度的影响及其机理[J]. 山东大学学报(工学版), 2016, 46(1): 80-85.
[5] 蔡文婧1,葛连升2. 基于排队论的银行业务窗口设置优化[J]. 山东大学学报(工学版), 2013, 43(3): 23-29.
[6] 李守凯,张峰,李术才*,邵冬亮. 施工定位误差对竖向预应力损失的影响研究[J]. 山东大学学报(工学版), 2011, 41(3): 101-105.
[7] 王清标. 孔道成孔工艺对锚固力损失的分析与控制[J]. 山东大学学报(工学版), 2009, 39(4): 145-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 欣,李术才,李树忱 . 考虑天然渗流场影响的地应力场反演回归分析及应用[J]. 山东大学学报(工学版), 2008, 38(4): 57 -62 .
[2] 施来顺,董岩岩,李彦彦,李文静 . 二氧化氯催化氧化处理铬黑T模拟废水的实验[J]. 山东大学学报(工学版), 2007, 37(5): 113 -117 .
[3] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154 -158 .
[4] 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1 -10 .
[5] 牛新生,叶华,王亮 . 多层包扎尿素合成塔无损评价方法研究[J]. 山东大学学报(工学版), 2007, 37(4): 0 -0 .
[6] 冯治宇 . 褐煤基吸附催化剂脱硫脱氮的研究[J]. 山东大学学报(工学版), 2007, 37(1): 107 -110 .
[7] 尚芳 刘允刚 张承慧. 一类不确定非线性系统输出反馈扰动抑制[J]. 山东大学学报(工学版), 2010, 40(1): 19 -27 .
[8] 谭台哲,梁应毅,刘富春. 一种ReliefF特征估计方法在无监督流形学习中的应用[J]. 山东大学学报(工学版), 2010, 40(5): 66 -71 .
[9] 吴俊飞 林美 祝卫国 张艳飞. 含圆坑缺陷尿塔衬里开裂原因分析[J]. 山东大学学报(工学版), 2010, 40(1): 84 -86 .
[10] 谢楠 . 不确定非线性离散时滞系统的可靠保成本控制[J]. 山东大学学报(工学版), 2007, 37(4): 28 -33 .