山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1-6.doi: 10.6040/j.issn.1672-3961.0.2017.541
• • 下一篇
刘晓明1,许乃媛2,杨斌1,魏鑫1,张丽娜1,曹永吉3*
LIU Xiaoming1, XU Naiyuan2, YANG Bin1, WEI Xin1, ZHANG Lina1, CAO Yongji3*
摘要: 特高压作为全球能源互联网的关键支撑,其规划将影响世界能源的安全性和经济性,针对受端特高压电网的规划问题,综合落点布局和网架结构调整,提出双阶段优化方法。在第一阶段,以最大化受端交流系统强度、静态电压稳定性和最小化网络有功损耗为优化目标,构建三目标优化模型对特高压落点进行规划,采用归一化方法和标量化方法求解。在第二阶段,以短路电流和性能代价比为指标,基于BPA软件,对受端网架结构进行优化调整。以山东电网特高压网架规划为例进行仿真,结果表明落点优化布局方案与实际情况相符,提出方法能够有效保证特高压接入后电网的安全、经济运行。
中图分类号:
[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015. [2] 张恒旭, 施啸寒, 刘玉田, 等. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102. ZHANG Hengxu, SHI Xiaohan, LIU Yutian, et al. Support of the renewable energy base in northwest of China on the construction of global energy interconnection[J]. Journal of Shandong University(Engineering Science), 2016, 46(4): 96-102. [3] 张小平, 李佳宁, 付灏. 全球能源互联网对话工业4.0[J]. 电网技术, 2016, 40(6): 1607-1611. ZHANG Xiaoping, LI Jianing, FU Hao. Global energy interconnection dialogue industry 4.0[J]. Power System Technology, 2016, 40(6): 1607-1611. [4] 王益民. 全球能源互联网理念及前景展望[J]. 中国电力, 2016, 49(3): 1-5. WANG Yimin. Concept and prospect of global energy interconnection[J]. Electric Power, 2016, 49(3): 1-5. [5] CAO Y, ZHANG Y, ZHANG H, et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1291-1300. [6] 刘振亚. 特高压交直流电网[M]. 北京: 中国电力出版社, 2013. [7] 吴耀文, 马溪原, 方华亮, 等. 大规模风电特高压专用通道落点优选方法[J]. 中国电机工程学报, 2012, 32(1): 9-16. WU Yaowen, MA Xiyuan, FANG Hualiang, et al. Selection method of optimal access point for large scale wind power transmission UHV corridor[J]. Proceedings of the CSEE, 2012, 32(1): 9-16. [8] 邵瑶, 汤涌, 郭小江, 等. 多直流馈入华东受端电网暂态电压稳定性分析[J]. 电网技术, 2011, 35(12): 50-55. SHAO Yao, TANG Yong, GUO Xiaojiang, et al. Transient voltage stability analysis of east China receiving-end power grid with multi-infeed HVDC transmission lines[J]. Power System Technology, 2011, 35(12): 50-55. [9] 周勤勇, 刘玉田, 汤涌. 受端电网最大直流受入规模分析方法[J]. 高电压技术, 2015, 41(3): 770-777. ZHOU Qinyong, LIU Yutian, TANG Yong. Analysis method for the maximum HVDCs' capacity to receiving-end power grid[J]. High Voltage Engineering, 2015, 41(3): 770-777. [10] 杨海涛, 吉平, 刘晋雄, 等. 特高压网架方案功能和可靠性分析[J]. 高电压技术, 2017, 43(3): 1014-1022. YANG Haitao, JI Ping, LIU Jinxiong, et al. Analysis on the function and reliability of UHV grid-frame schemes[J]. High Voltage Engineering, 2017, 43(3): 1014-1022. [11] LONG R, ZHANG J. Risk assessment method of UHV AC/DC power system under serious disasters[J]. Energies, 2016, 10(1): 13. [12] WANG B, DONG X, BO Z, et al. RTDS environment development of ultra-high-voltage power system and relay protection test[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 618-623. [13] TENG Y, LI X, HUANG Q, et al. A novel high-frequency voltage standing-wave ratio-based grounding electrode line fault supervision in ultra-high voltage DC transmission systems[J]. Energies, 2017, 10(3): 309. [14] YU W, XUE Y, LUO J, et al. An UHV grid security and stability defense system: considering the risk of power system communication[J]. IEEE Transactions on Smart Grid, 2015, 7(1): 491-500. [15] MIAO Y, CHENG H. An optimal reactive power control strategy for UHVAC/DC hybrid system in east China grid[J]. IEEE Transactions on Smart Grid, 2015, 7(1): 392-399. [16] 王同文, 许文格, 管霖. 电力网的网架结构优化规划方法[J]. 继电器, 2005, 33(21): 58-64. WANG Tongwen, XU Wenge, GUAN Lin. Method for optimal programming of the electric power structure[J]. Relay, 2005, 33(21): 58-64. [17] 陆文甜, 林舜江, 刘明波, 等. 含风电场的交直流互联电力系统网省协调有功调度优化方法[J]. 电力系统自动化, 2015, 39(7): 89-96. LU Wentian, LIN Shunjiang, LIU Mingbo, et al. A regional and provincial grid coordination optimization method for active power dispatch in AC/DC interconnected power system with wind power integration[J]. Automation of Electric Power Systems, 2015, 39(7): 89-96. [18] 熊雄, 叶林, 杨仁刚. 风电功率小波包分解结合储能模糊控制的配电网多目标优化[J]. 电力系统自动化, 2015, 39(15): 68-74. XIONG Xiong, YE Lin, YANG Rengang. Distribution power system multi-objective optimization based on wind power wavelet packet decomposition and storage system fuzzy control[J]. Automation of Electric Power Systems, 2015, 39(15): 68-74. [19] 刘昇, 徐政. 联于弱交流系统的VSC-HVDC稳定运行区域研究[J]. 中国电机工程学报, 2016, 36(1): 133-144. LIU Sheng, XU Zheng. Study on stable operating region of VSC-HVDC connected to weak AC systems[J]. Proceedings of the CSEE, 2016, 36(1): 133-144. [20] 刘文颖, 文晶, 谢昶, 等. 考虑风电消纳的电力系统源荷协调多目标优化方法[J]. 中国电机工程学报, 2015, 35(5): 1079-1088. LIU Wenying, WEN Jing, XIE Chang, et al. Multi-objective optimal method considering wind power accommodation based on source-load coordination[J]. Proceedings of the CSEE, 2015, 35(5): 1079-1088. [21] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004. [22] XU X, CAO Y, ZHANG H, et al. A multi-objective optimization approach for corrective switching of transmission systems in emergency scenarios[J]. Energies, 2017, 10(8): 1204. |
[1] | 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88. |
[2] | 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156. |
[3] | 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133. |
[4] | 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142. |
[5] | 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150. |
[6] | 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102. |
[7] | 赵康,王春义,杨冬,刘玉田. 考虑单相短路电流控制的特高压受端电网限流优化[J]. 山东大学学报(工学版), 2016, 46(4): 117-124. |
|