您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 103-109.doi: 10.6040/j.issn.1672-3961.0.2017.269

• • 上一篇    下一篇

基于改进距离相似度的故障可分离性分析方法

宋洋1,钟麦英2*   

  1. 1. 北京航空航天大学仪器科学与光电工程学院, 北京 100191;2. 山东科技大学电气与自动化工程学院, 山东 青岛 266590
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 钟麦英(1965— ),女,山东淄博人,教授,博士,主要研究方向为鲁棒故障诊断与容错控制. E-mail: myzhong@buaa.edu.cn E-mail:ysong@buaa.edu.cn
  • 作者简介:宋洋(1990— ),女,吉林省集安人,博士,主要研究方向为故障诊断. E-mail: ysong@buaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61333005,61421063);山东省泰山学者优势特色学科人才资助项目

Fault isolability analysis based on improved distance similarity

SONG Yang1, ZHONG Maiying2*   

  1. 1. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
    2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 为了定量分析故障分离的难易程度,提出基于改进距离相似度的故障可分离性分析方法。 以基于等价空间的故障诊断残差产生器为例,根据不同故障引起残差向量在概率分布上的差异建立改进故障分离条件,利用残差向量的距离相似度和方向相似度评价故障分离的难易程度,提出基于改进距离相似度的故障可分离性定量评价指标。通过仿真试验分析某固定翼无人机纵向飞行控制系统的故障可分离性。结果表明:该方法能够准确判断故障分离条件,定量分析系统进行故障分离的难易程度,与现有方法相比,改进故障分离条件更为直观,基于改进距离相似度的故障可分离性评价指标能够实现残差向量在距离差异和方向差异的综合评价。

关键词: 故障诊断, 故障可分离性, 残差产生器, 定量评价, 改进距离相似度

Abstract: A fault isolability analysis approach based on improved distance similarity was proposed to evaluate quantitatively the difficulty level of fault isolation. A parity space-based fault diagnosis residual generator was taken as an example, and the improved fault isolation condition was constructed based on the difference of the residuals in probability distribution. Then the distance similarity and direction similarity of residuals were adopted to evaluate the difficulty level of fault isolation, and the quanlitative evaluation index of fault isolability was put forward. A simulation was carried out to analyze the fault isolability of a fixed-wing unmanned aerial vehicle longitudinal flight control system. The results demonstrated that the method could decide accurately the fault isolation condition, and evaluate quantitatively the difficulty level of fault isolation. The improved fault isolation condition was more intuitional, and the evaluation index could evaluate comprehensively the difference of residuals in both distance and direction compared with existing approaches.

Key words: residual generator, quantitative evaluation, fault diagnosis, improved distance similarity, fault isolability

中图分类号: 

  • TP206
[1] GERTLER J J. Fault detection and diagnosis in engineering systems[M]. New York: Marcel Dekker, 1998:188-191.
[2] DING S X. Model-based fault diagnosis techniques: design schemes, algorithms, and tools[M]. Berlin: Springer, 2013:98-102, 405-413.
[3] 闻新, 张洪钺, 周露. 控制系统的故障诊断和容错控制[M]. 北京: 机械工业出版社, 1998:31-37.
[4] GAO Z W, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques:part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767.
[5] ZHONG M Y, DING S X, ZHOU D H. A new scheme of fault detection for linear discrete tme-varying systems[J]. IEEE Transactions on Automatic Control, 2016, 61(9): 2597-2602.
[6] HERRERA-OROZCO A R, BRETAS A S, OROZCO-HENAO C, et al. Incipient fault location formulation: a time-domain system model and parameter estimation approach[J]. International Journal of Electrical Power and Energy Systems, 2017, 90: 112-123.
[7] KOSCIELNY J M, BARTYS M, RZEPIEJEWSKI P, et al. Actuator fault distinguishability study for the DAMADICS benchmark problem[J]. Control Engineering Practice, 2006, 14(6): 645-665.
[8] SHARIFI R, LANGARI R. Isolability of faults in sensor fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2733-2744.
[9] SHARIFI R, LANGARI R. Sensor fault diagnosis with a probabilistic decision process[J]. Mechanical Systems and Signal Processing, 2013, 34(1): 146-155.
[10] 李文博, 王大轶,刘成瑞. 动态系统实际故障可诊断性的量化评价研究[J]. 自动化学报, 2015, 41(3): 497-507. LI Wenbo, WANG Dayi, LIU Chengrui. Quantitative evaluation of actual fault diagnosability for dynamic systems[J]. ACTA Automatica Sinica, 2015, 41(3): 497-507.
[11] CHI C Y, WANG D W, YU M, et al. Sensor placement for fault isolability using low complexity dynamic programming[J]. IEEE Transaction on Automation Science and Engineering, 2015, 12(3): 1080-1090.
[12] 刘文静, 刘成瑞, 王南华, 等. 定量与定性相结合的动量轮故障可诊断性评价[J]. 中国空间科学技术, 2011(4):54-63. LIU Wenjing, LIU Chengrui, WANG Nanhua, et al. Qualitative and quantitative evaluation on fault diagnosability of momentum wheels[J]. Chinese Space Science and Technology, 2011(4):54-63.
[13] ERIKSSON D, FRISK E, KRYSANDER M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models[J]. Automatica, 2013, 49(1): 1591-1600.
[14] JUNG D, F RISK E, KRYSANDER M. Quantitative isolability analysis of different fault modes[J]. IFAC-Papers Online, 2015, 48(21):1275-1282.
[15] PARK S, P PARK Y, P PARK Y S. Degree of fault isolability and active fault diagnosis for redundantly actuated vehicle system[J]. International Journal of Automotive Technology, 2016, 17(6):1045-1053.
[16] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1):79-86.
[17] HAMERSMA H A, SCHALK E P. Longitudinal vehicle dynamic control for improved vehicle safety[J]. Journal of Terramechanics, 2014, 54: 19-36.
[18] QIAN M S, JIANG B, LIU H T. Dynamic surface active fault tolerant control design for the attitude control systems of UAV with actuator fault[J]. International Journal of Control Automation and Systems, 2016, 14(3): 723-732.
[19] HWANG W, HUH K. Fault detection and estimation for electromechanical brake systems using parity space approach[J]. Journal of Dynamic Systems. Measurement, & Control, 2015, 137(1): 1-7.
[20] ALIREZA A, KANG K Y, SHIRIN N, et al. Detection of fault data injection attack on UAV using adaptive neural network[J]. Procedia Computer Science, 2016, 95: 193-200.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[4] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[5] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[6] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[7] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[8] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[9] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[10] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[11] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[12] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[13] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[14] 李静立,王谦,张军,李磊磊. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102.
[15] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!