山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 69-78.doi: 10.6040/j.issn.1672-3961.0.2016.482
赵子健,王芳,常发亮
ZHAO Zijian, WANG Fang, CHANG Faliang
摘要: 在计算机辅助手术领域中医疗机器人技术是目前一个研究热点。介绍医疗机器人技术的概念以及在计算机辅助手术中应用的必要性;针对医疗机器人技术在计算机辅助手术领域中的国内外研究现状,从骨外科、神经外科、窥镜外科和介入治疗等四个方面,分别进行了详细综述,并介绍具有代表性的外科手术机器人系统;通过分析医疗机器人当前的研究现状,指出内窥镜外科手术机器人将是未来医疗机器人的发展方向,通过探讨内窥镜外科手术机器人所涉及的四个亟待解决的问题,指出了需要进一步研究和发展的方向。
中图分类号:
[1] HOWE R D, MATSUOKA Y. Robotics for surgery[J]. Annual Review of Biomedical Engineering, 1999, 1(1): 211-240. [2] DAVIES B. A review of robotics in surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2000, 214(1):129-140. [3] TAYLOR R H, STOIANOVICI D. Medical robotics in computer-integrated surgery[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):765-781. [4] LANFRANCO A R, CASTELLANOS A E, DESAI J P, et al. Robotic surgery: a current perspective[J]. Annals of Surgery, 2004, 239(1):14-21. [5] BARGAR W L, BAUER A, BÖRNER M. Primary and revision total hip replacement using the robodoc system[J]. Clinical Orthopaedics and Related Research, 1998, 354:82-91. [6] SCHULZ A P, SEIDE K, QUEITSCH C, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3(4):301-306. [7] KAZANZIDES P, ZUHARS J, MITTELSTADT B, et al. Force sensing and control for a surgical robot[C] //Proceedings of the 1992 IEEE International Conference on Robotics and Automation(ICRA). Nice, France:IEEE, 1992:612-617. [8] YEN P L, DAVIES B L. Active constraint control for image-guided robotic surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5):623-631. [9] PEARLE A D, O'LOUGHLIN P F, KENDOFF D O. Robot-assisted unicompartmental knee arthroplasty[J]. The Journal of Arthroplasty, 2010, 25(2):230-237. [10] PEARLE A D, KENDOFF D, STUEBER V, et al. Perioperative management of unicompartmental knee arthroplasty using the MAKO robotic arm system(MAKOplasty)[J]. American Journal of Orthopedics, 2009, 38(2):16-19. [11] ROSEN J, HANNAFORD B, SATAVA R, et al. Surgical robotics: systems applications and visions[M]. New York, USA: Springer, 2011. [12] PLASKOS C, CINQUIN P, LAVALLÉE S, et al. Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(4):67-79. [13] KOULALIS D, O'LOUGHLIN P F, PLASKOS C, et al. Sequential versus automated cutting guides in computer-assisted total knee arthroplasty[J]. The Knee, 2011, 18(6):436-442. [14] ZHAO Z, LIU Y. A new computer assisted orthopaedic surgery system: WATO[J]. Chinese Journal of Biomedical Engineering, 2013, 22(4): 139-147. [15] VARMA T R K, ELDRIDGE P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2(2): 107-113. [16] LI Q H, ZAMORANO L, PANDYA A, et al. The application accuracy of the NeuroMate robot—A quantitative comparison with frameless and frame-based surgical localization systems[J]. Computer Aided Surgery, 2002, 7(2): 90-98. [17] MORGAN P S, CARTER T, DAVIS S, et al. The application accuracy of the Pathfinder neurosurgical robot[J].International Congress Series. Amsterdam, The Netherlands: Elsevier, 2003, 1256: 561-567. [18] DEACON G, HARWOOD A, HOLDBACK J, et al. The Pathfinder image-guided surgical robot[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5): 691-713. [19] BRODIE J, ELJAMEL S. Evaluation of a neurosurgical robotic system to make accurate burr holes[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(1): 101-106. [20] JOSKOWICZ L, SHAMIR R, ISRAEL Z, et al. Renaissance robotic system for keyhole cranial neurosurgery: in-vitro accuracy study[C] //Proceedings of the Simposio Mexicano en Ciruga Asistida por Computadoray Procesamiento de Imgenes Mdicas(MexCAS'11). [S.l.] :[s.n.] , 2011. [21] 唐粲,王田苗,丑武胜,等. 脑外科机器人控制系统的设计和实现[J]. 机器人,2004,26(6):543-547. TANG Can, WANG Tianmiao, CHOU Wusheng, et al. Design and realization of robot control system for neurosurgery[J].Robot, 2004, 26(6):543-547. [22] BALLANTYNE G H. Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results[J]. Surgical Endoscopy and Other Interventional Techniques, 2002, 16(10): 1389-1402. [23] SUNG G T, GILL I S. Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems[J]. Urology, 2001, 58(6): 893-898. [24] MOZER P, TROCCAZ J, STOIANOVICI D. Robotics in urology: past, present, and future[M] //Atlas of Robotic Urologic Surgery. New York, USA: Springer, 2011: 3-13. [25] SHAH K, ABAZA R. Comparison of intraoperative outcomes using the new and old generation da Vinci® robot for robot-assisted laparoscopic prostatectomy[J]. British Journal of Urology International, 2011, 108(10): 1642-1645. [26] STARK M, BENHIDJEB T, GIDARO S, et al. The future of telesurgery: a universal system with haptic sensation[J]. Journal of the Turkish German Gynecological Association, 2012, 13(1): 74. [27] REDDY V Y, NEUZIL P, MALCHANO Z J, et al. View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility[J]. Circulation, 2007, 115(21): 2705-2714. [28] CHUN K R J, SCHMIDT B, KÖKTÜRK B, et al. Catheter ablation-new developments in robotics[J]. Herz, 2008, 33(8): 586-589. [29] RIGA C V, BICKNELL C D, WALLACE D, et al. Robot-assisted antegrade in-situ fenestrated stent grafting[J]. Cardio Vascular and Interventional Radiology, 2009, 32(3): 522-524. [30] ERNST S, OUYANG F, LINDER C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system[J]. Circulation, 2004, 109(12): 1472-1475. [31] CHUN J K R, ERNST S, MATTHEWS S, et al. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory[J]. European Heart Journal, 2007, 28(2):190-195. [32] XU K, GOLDMAN R E, DING J, et al. System design of an insertable robotic effector platform for single port access(SPA)surgery[C] //Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS'2009). St. Louis, USA: IEEE, 2009: 5546-5552. [33] SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C] //Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011: 1147-1152. [34] PANDALAI S, KAVANAGH D O, NEARY P. Robotic assisted laparoscopic colectomy[J]. Irish Journal of Medical Science, 2010, 103(6):181-182. [35] 赵子健,翁莹. 视觉透视技术在计算机辅助手术领域的研究综述[J]. 中国生物医学工程学报,2014,33(3):349-357. ZHAO Zijian,WENG Ying. Survey of see-through technique in computer-aided surgery[J]. Chinese Journal of Biomedical Engineering, 2014, 33(3):349-357. [36] PRYTZ E, MONTANO M, SCERBO M W. Using Fitts' law for a 3D pointing task on a 2D display: effects of depth and vantage point [C] //Proceedings of the Human Factors and Ergonomics Society. Boston: Sage Publications, 2012: 1391-1395. [37] JONES J A, SWAN II J E, SINGH G, et al. Peripheral visual information and its effect on distance judgments in virtual and augmented environments[C] //Proceedings of the APGV 2011: ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. Toulouse, France: ACM, 2011: 29-36. [38] KUHL S A, THOMPSON W B, CREEM-REGEHR S H. HMD calibration and its effects on distance judgments[J]. ACM Transactions on Applied Perception(TAP), 2009, 6(3): 19. [39] SINGH G, SWAN II J E, JONES J A, et al. Depth judgments by reaching and matching in near-field augmented reality [C] //Proceedings of the 2012 IEEE Virtual Reality. Orange County, CA: IEEE Computer Society, 2012: 165-166. [40] JONES J A, SUMA E A, KRUM D M, et al. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments [C] //Proceedings of the 2012 ACM Symposium on Applied Perception. Los Angeles, USA: ACM, 2012:119-122. [41] HANNA G B, SHIMI S M, CUSCHIERI A. Task performance in endoscopic surgery is influenced by location of the image display[J]. Annals of Surgery, 1998, 227(4):481-484. |
[1] | 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49. |
[2] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
[3] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[4] | 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21. |
[5] | 马帅依凡,赵子健. 基于人工标记的手术导航仪[J]. 山东大学学报(工学版), 2017, 47(3): 63-68. |
[6] | 刘斌,宋锐,柴汇. 基于虚拟模型和加速度规划的腿部缓冲策略[J]. 山东大学学报(工学版), 2016, 46(6): 69-75. |
[7] | 赵子健,陈兆瑞,李冰清. 基于非最小化优化的手眼标定方法[J]. 山东大学学报(工学版), 2016, 46(4): 28-33. |
[8] | 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34. |
[9] | 丁娜娜,田国会*,李国栋,张庆宾. 基于人工地标的双足机器人视觉自定位[J]. 山东大学学报(工学版), 2013, 43(4): 51-56. |
[10] | 李贻斌,阮久宏,刘鲁源,宋 锐,荣学文 . 车辆纵向加速度自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 1-04 . |
[11] | 阮久宏,李贻斌,荣学文,邱绪云 . 高速移动平台横向运动自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 5-10 . |
[12] | 田国会,李晓磊,赵守鹏,路飞 . 家庭服务机器人智能空间技术研究与进展[J]. 山东大学学报(工学版), 2007, 37(5): 53-59 . |
[13] | 李彩虹,李贻斌,范晨 . 移动机器人动态避障算法[J]. 山东大学学报(工学版), 2007, 37(5): 60-64 . |
[14] | 宋洪军,马昕,李贻斌,贾磊 . 教育机器人三维软件系统的设计与实现[J]. 山东大学学报(工学版), 2007, 37(4): 34-38 . |
[15] | 牛君,李贻斌,宋锐 . 一种基于激光信息的移动机器人两步自定位方法[J]. 山东大学学报(工学版), 2007, 37(3): 46-50 . |
|