您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 69-78.doi: 10.6040/j.issn.1672-3961.0.2016.482

• • 上一篇    下一篇

计算机辅助外科手术中医疗机器人技术研究综述

赵子健,王芳,常发亮   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2016-12-21 出版日期:2017-06-20 发布日期:2016-12-21
  • 作者简介:赵子健(1979— ),男,山东济南人,副教授,博士,主要研究方向为计算机视觉,模式识别,机器人辅助手术.E-mail: zhaozijian@sdu.edu.cn
  • 基金资助:
    山东省优秀中青年科学家奖励研究基金资助项目(BS2013DX027);教育部博士点基金资助项目(20130131120036);国家自然科学基金资助项目(81401543,61673244)

Survey on medical robot in computer-aided surgery

ZHAO Zijian, WANG Fang, CHANG Faliang   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2016-12-21 Online:2017-06-20 Published:2016-12-21

摘要: 在计算机辅助手术领域中医疗机器人技术是目前一个研究热点。介绍医疗机器人技术的概念以及在计算机辅助手术中应用的必要性;针对医疗机器人技术在计算机辅助手术领域中的国内外研究现状,从骨外科、神经外科、窥镜外科和介入治疗等四个方面,分别进行了详细综述,并介绍具有代表性的外科手术机器人系统;通过分析医疗机器人当前的研究现状,指出内窥镜外科手术机器人将是未来医疗机器人的发展方向,通过探讨内窥镜外科手术机器人所涉及的四个亟待解决的问题,指出了需要进一步研究和发展的方向。

关键词: 医疗机器人, 神经外科手术机器人, 窥镜外科手术机器人, 介入治疗手术机器人, 骨外科手术机器人

Abstract: The application of medical robot technique in computer-aided surgery was a hot research topic at present. The concept of medical robot was introduced, and the necessity of its application in computer-aided surgery was also emphasized. The state of arts of medical robot technique was discussed systematically in computer-aided surgery, covering the four aspects: orthopedic surgery, neurological surgery, laparoscopic surgery and intervention surgery. Besides, some corresponding medical robot systems were also introduced. Through the analysis on the medical robot technique, the laparoscopic robot was considered as the most promising research direction. There were four urgent problems concerning the laparoscopic robot. Based on the four problems, further research questions and possible directions in the future were proposed.

Key words: medical robot, neurological robot, laparoscopic robot, intervention robot, orthopedic robot

中图分类号: 

  • TP242
[1] HOWE R D, MATSUOKA Y. Robotics for surgery[J]. Annual Review of Biomedical Engineering, 1999, 1(1): 211-240.
[2] DAVIES B. A review of robotics in surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2000, 214(1):129-140.
[3] TAYLOR R H, STOIANOVICI D. Medical robotics in computer-integrated surgery[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):765-781.
[4] LANFRANCO A R, CASTELLANOS A E, DESAI J P, et al. Robotic surgery: a current perspective[J]. Annals of Surgery, 2004, 239(1):14-21.
[5] BARGAR W L, BAUER A, BÖRNER M. Primary and revision total hip replacement using the robodoc system[J]. Clinical Orthopaedics and Related Research, 1998, 354:82-91.
[6] SCHULZ A P, SEIDE K, QUEITSCH C, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3(4):301-306.
[7] KAZANZIDES P, ZUHARS J, MITTELSTADT B, et al. Force sensing and control for a surgical robot[C] //Proceedings of the 1992 IEEE International Conference on Robotics and Automation(ICRA). Nice, France:IEEE, 1992:612-617.
[8] YEN P L, DAVIES B L. Active constraint control for image-guided robotic surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5):623-631.
[9] PEARLE A D, O'LOUGHLIN P F, KENDOFF D O. Robot-assisted unicompartmental knee arthroplasty[J]. The Journal of Arthroplasty, 2010, 25(2):230-237.
[10] PEARLE A D, KENDOFF D, STUEBER V, et al. Perioperative management of unicompartmental knee arthroplasty using the MAKO robotic arm system(MAKOplasty)[J]. American Journal of Orthopedics, 2009, 38(2):16-19.
[11] ROSEN J, HANNAFORD B, SATAVA R, et al. Surgical robotics: systems applications and visions[M]. New York, USA: Springer, 2011.
[12] PLASKOS C, CINQUIN P, LAVALLÉE S, et al. Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(4):67-79.
[13] KOULALIS D, O'LOUGHLIN P F, PLASKOS C, et al. Sequential versus automated cutting guides in computer-assisted total knee arthroplasty[J]. The Knee, 2011, 18(6):436-442.
[14] ZHAO Z, LIU Y. A new computer assisted orthopaedic surgery system: WATO[J]. Chinese Journal of Biomedical Engineering, 2013, 22(4): 139-147.
[15] VARMA T R K, ELDRIDGE P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2(2): 107-113.
[16] LI Q H, ZAMORANO L, PANDYA A, et al. The application accuracy of the NeuroMate robot—A quantitative comparison with frameless and frame-based surgical localization systems[J]. Computer Aided Surgery, 2002, 7(2): 90-98.
[17] MORGAN P S, CARTER T, DAVIS S, et al. The application accuracy of the Pathfinder neurosurgical robot[J].International Congress Series. Amsterdam, The Netherlands: Elsevier, 2003, 1256: 561-567.
[18] DEACON G, HARWOOD A, HOLDBACK J, et al. The Pathfinder image-guided surgical robot[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5): 691-713.
[19] BRODIE J, ELJAMEL S. Evaluation of a neurosurgical robotic system to make accurate burr holes[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(1): 101-106.
[20] JOSKOWICZ L, SHAMIR R, ISRAEL Z, et al. Renaissance robotic system for keyhole cranial neurosurgery: in-vitro accuracy study[C] //Proceedings of the Simposio Mexicano en Ciruga Asistida por Computadoray Procesamiento de Imgenes Mdicas(MexCAS'11). [S.l.] :[s.n.] , 2011.
[21] 唐粲,王田苗,丑武胜,等. 脑外科机器人控制系统的设计和实现[J]. 机器人,2004,26(6):543-547. TANG Can, WANG Tianmiao, CHOU Wusheng, et al. Design and realization of robot control system for neurosurgery[J].Robot, 2004, 26(6):543-547.
[22] BALLANTYNE G H. Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results[J]. Surgical Endoscopy and Other Interventional Techniques, 2002, 16(10): 1389-1402.
[23] SUNG G T, GILL I S. Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems[J]. Urology, 2001, 58(6): 893-898.
[24] MOZER P, TROCCAZ J, STOIANOVICI D. Robotics in urology: past, present, and future[M] //Atlas of Robotic Urologic Surgery. New York, USA: Springer, 2011: 3-13.
[25] SHAH K, ABAZA R. Comparison of intraoperative outcomes using the new and old generation da Vinci® robot for robot-assisted laparoscopic prostatectomy[J]. British Journal of Urology International, 2011, 108(10): 1642-1645.
[26] STARK M, BENHIDJEB T, GIDARO S, et al. The future of telesurgery: a universal system with haptic sensation[J]. Journal of the Turkish German Gynecological Association, 2012, 13(1): 74.
[27] REDDY V Y, NEUZIL P, MALCHANO Z J, et al. View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility[J]. Circulation, 2007, 115(21): 2705-2714.
[28] CHUN K R J, SCHMIDT B, KÖKTÜRK B, et al. Catheter ablation-new developments in robotics[J]. Herz, 2008, 33(8): 586-589.
[29] RIGA C V, BICKNELL C D, WALLACE D, et al. Robot-assisted antegrade in-situ fenestrated stent grafting[J]. Cardio Vascular and Interventional Radiology, 2009, 32(3): 522-524.
[30] ERNST S, OUYANG F, LINDER C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system[J]. Circulation, 2004, 109(12): 1472-1475.
[31] CHUN J K R, ERNST S, MATTHEWS S, et al. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory[J]. European Heart Journal, 2007, 28(2):190-195.
[32] XU K, GOLDMAN R E, DING J, et al. System design of an insertable robotic effector platform for single port access(SPA)surgery[C] //Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS'2009). St. Louis, USA: IEEE, 2009: 5546-5552.
[33] SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C] //Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011: 1147-1152.
[34] PANDALAI S, KAVANAGH D O, NEARY P. Robotic assisted laparoscopic colectomy[J]. Irish Journal of Medical Science, 2010, 103(6):181-182.
[35] 赵子健,翁莹. 视觉透视技术在计算机辅助手术领域的研究综述[J]. 中国生物医学工程学报,2014,33(3):349-357. ZHAO Zijian,WENG Ying. Survey of see-through technique in computer-aided surgery[J]. Chinese Journal of Biomedical Engineering, 2014, 33(3):349-357.
[36] PRYTZ E, MONTANO M, SCERBO M W. Using Fitts' law for a 3D pointing task on a 2D display: effects of depth and vantage point [C] //Proceedings of the Human Factors and Ergonomics Society. Boston: Sage Publications, 2012: 1391-1395.
[37] JONES J A, SWAN II J E, SINGH G, et al. Peripheral visual information and its effect on distance judgments in virtual and augmented environments[C] //Proceedings of the APGV 2011: ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. Toulouse, France: ACM, 2011: 29-36.
[38] KUHL S A, THOMPSON W B, CREEM-REGEHR S H. HMD calibration and its effects on distance judgments[J]. ACM Transactions on Applied Perception(TAP), 2009, 6(3): 19.
[39] SINGH G, SWAN II J E, JONES J A, et al. Depth judgments by reaching and matching in near-field augmented reality [C] //Proceedings of the 2012 IEEE Virtual Reality. Orange County, CA: IEEE Computer Society, 2012: 165-166.
[40] JONES J A, SUMA E A, KRUM D M, et al. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments [C] //Proceedings of the 2012 ACM Symposium on Applied Perception. Los Angeles, USA: ACM, 2012:119-122.
[41] HANNA G B, SHIMI S M, CUSCHIERI A. Task performance in endoscopic surgery is influenced by location of the image display[J]. Annals of Surgery, 1998, 227(4):481-484.
[1] 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49.
[2] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
[3] 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56.
[4] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[5] 马帅依凡,赵子健. 基于人工标记的手术导航仪[J]. 山东大学学报(工学版), 2017, 47(3): 63-68.
[6] 刘斌,宋锐,柴汇. 基于虚拟模型和加速度规划的腿部缓冲策略[J]. 山东大学学报(工学版), 2016, 46(6): 69-75.
[7] 赵子健,陈兆瑞,李冰清. 基于非最小化优化的手眼标定方法[J]. 山东大学学报(工学版), 2016, 46(4): 28-33.
[8] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28-34.
[9] 丁娜娜,田国会*,李国栋,张庆宾. 基于人工地标的双足机器人视觉自定位[J]. 山东大学学报(工学版), 2013, 43(4): 51-56.
[10] 李贻斌,阮久宏,刘鲁源,宋 锐,荣学文 . 车辆纵向加速度自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 1-04 .
[11] 阮久宏,李贻斌,荣学文,邱绪云 . 高速移动平台横向运动自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 5-10 .
[12] 田国会,李晓磊,赵守鹏,路飞 . 家庭服务机器人智能空间技术研究与进展[J]. 山东大学学报(工学版), 2007, 37(5): 53-59 .
[13] 李彩虹,李贻斌,范晨 . 移动机器人动态避障算法[J]. 山东大学学报(工学版), 2007, 37(5): 60-64 .
[14] 宋洪军,马昕,李贻斌,贾磊 . 教育机器人三维软件系统的设计与实现[J]. 山东大学学报(工学版), 2007, 37(4): 34-38 .
[15] 牛君,李贻斌,宋锐 . 一种基于激光信息的移动机器人两步自定位方法[J]. 山东大学学报(工学版), 2007, 37(3): 46-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!