山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 86-93.doi: 10.6040/j.issn.1672-3961.1.2016.282
何其佳,刘振丙*,徐涛,蒋淑洁
HE Qijia, LIU Zhenbing*, XU Tao, JIANG Shujie
摘要: 为解决磁共振(magnetic resonance, MR)脑部图像来源不一以及病变位置和形态不固定造成MR脑部图像分类精度不高的问题,提出基于局部二值模式(local binary pattern, LBP)的纹理特征提取,并用极限学习机(extreme learning machine, ELM)对MR图像分类。计算图像感兴趣区域(region of interest, ROI)的掩码,将图像分成扇形的子区域,统计掩码坐标下各块子区域的LBP直方图,连接所有LBP直方图作为特征向量通过ELM进行分类。相比以前的方法,该方法能够计算颅脑内局部纹理特征,能分类来源不一以及多种病变的图像。对脑部MR图像分类进行试验,对所有样本分类正确率超过92%,正类样本正确率超过93%,负类样本正确率超过91%。试验结果表明,该方法能够对较为复杂的MR图像进行正确分类。
中图分类号:
[1] 刘岳, 王小鹏, 于挥,等. 基于形态学多尺度修正的模糊C均值脑肿瘤分割方法[J]. 计算机应用, 2014, 34(9): 2711-2715. LIU Yue, WANG Xiaopeng, YU Hui, et al. Brain tumor segmentation based on morphological multi-scale modification and fuzzy C-means clustering[J]. Journal of Computer Applications, 2014, 34(9): 2711-2715. [2] 沈晔, 李敏丹, 夏顺仁. 基于内容的医学图像检索技术[J]. 计算机辅助设计与图形学学报, 2010, 22(4):569-578. SHEN Ye, LI Mindan, XIA Shunren. A survey on content-based medical image retrieval[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(4):569-578. [3] MAGNIN B, MESROB L. Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI[J]. Neuroradiology, 2009, 51(2):73-83. [4] LI X, XIA H, ZHOU Z, et al. 3D texture analysis of hippocampus based on MR images in patients with Alzheimer disease and mild cognitive impairment[C] //Biomedical Engineering and Informatics, 2010 3rd International Conference on IEEE. Yantai, China:IEEE, 2010:1-4. [5] CHAUDHARI A, KULKARNI J V. Local entropy based brain MR image segmentation[C] //2013 IEEE Third International Advance Computing Conference(IACC). Ghaziabad, India:IEEE, 2013:1229-1233. [6] ZULPE N, PAWAR VP. GLCM textural features for brain tumor classification[J]. International Journal of Computer Science Issues, 2012, 9(3): 354-359. [7] 夏宇. 基于不对称脑图像特征的阿尔兹海默病自动识别方法研究[D]. 重庆:重庆大学, 2013. XIA Yu. The Alzheimers disease automatic recognition method based on the asymmetry brain MR image features[D]. Chongqing: Chongqing University, 2013. [8] 李昕, 童隆正, 周晓霞,等. 基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J]. 中国医学影像技术, 2011, 27(5):1047-1051. LI Xin, TONG Longzheng, ZHOU Xiaoxia, et al. Classification of 3D texture features based on MR image in discrimination of Alzheimer's disease and mild cognitive impairment from normal controls[J]. Chinese Journal of Medical Imaging Technology, 2011, 27(5):1047-1051. [9] CHAPLOT S, PATNAIK L M,JAGANNATHAN N R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network[J]. Biomedical Signal Processing and Control, 2006, 1(1): 86-92. [10] ZHANG Y D, DONG Z C, WU L N, et al. A hybrid method for MRI brain image classification[J]. Expert Systems with Applications, 2011, 38(8): 10049-10053. [11] MANGAT S, JOSEPH P, MATHEW A T. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network[J]. Pattern Recognition Letters, 2013, 34(16): 2151-2156. [12] ZHU X, SUK H I, WANG L, et al. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis[J]. Human Immunology, 2014, 75(6):570-577. [13] ZHANG D, WANG Y, ZHOU L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage, 2011, 55(3):856-867. [14] LIU F, WEE C Y, CHEN H, et al. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimers disease and mild cognitive impairment identification[J]. Neuroimage, 2014, 84:466-475. [15] OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C] //IEEE 12th IAPR International Conference on Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing. Jerusalem, Israel:IEEE, 1994: 582-585. [16] HAFIANE A, SEETHARAMAN G, ZAVIDOVIQUE B. Median binary pattern for textures classification[J]. Lecture Notes in Computer Science, 2007:387-398. [17] PETPON A, SRISUK S. Face recognition with local line binary pattern[C] //International Conference on Image and Graphics, ICIG 2009. Xi'an, China: IEEE, 2009:533-539. [18] LORIS N, ALESSANDRA L, SHERYL B. Local binary patterns variants as texture descriptors for medical image analysis[J]. Artificial Intelligence in Medicine, 2010, 49(2):117-125. [19] GUO Z, ZHANG L, ZHANG D, et al. Rotation invariant texture classification using adaptive LBP with directional statistical features[C] //IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010: 285-288. [20] ZHANG W, SHAN S, GAO W, et al. Local gabor binary pattern histogram sequence(LGBPHS): a novel non-statistical model for face representation and recognition[C] //IEEE TenthInternational Conference on Computer Vision. Beijing,China:IEEE Computer Society, 2005:786-791. [21] 吴义根, 李可. SPM软件包数据处理原理简介——第一部分:基本数学原理[J]. 中国医学影像技术, 2004, 20(11):1768-1772. WU Yigen, LI Ke. Basic principle of SPM: an introduction—part Ⅰ: review in basic mathematic principle[J]. Chinese Journal of Medical Imaging Technology, 2004, 20(11):1768-1772. [22] MADABHUSHI A, UDUPA J K. New methods of MR image intensity standardization via generalized scale[J]. Medical Physics, 2006, 33(9):3426-3434. [23] NYUL L G, UDUPA J K, ZHANG X. New variants of a method of MRI scale standardization[J]. IEEE Transactions on Medical Imaging, 2000, 19(2):143-150. [24] OJALA T, PIETIKÄINEN M, MÄENPÄÄ T. Multiresolution gray-scale and rotation invariant texture classification with localbinary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. [25] HUANG G B, ZHU Q Y, SIEWC K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3):489-501. |
[1] | 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55. |
[2] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
[3] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[4] | 王晓初, 王士同, 包芳. 基于概率密度分布一致约束的最小最大概率机图像分类算法[J]. 山东大学学报(工学版), 2015, 45(5): 13-21. |
[5] | 李春雷, 张兆翔, 刘洲峰, 廖亮, 赵全军. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版), 2014, 44(4): 1-8. |
[6] | 安春霖1,陆慧娟1,2*,郑恩辉3,王明怡1,陆羿4. 嵌入误分类代价和拒识代价的极限学习机基因表达数据分类[J]. 山东大学学报(工学版), 2013, 43(4): 18-25. |
[7] | 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34. |
[8] | 尹建川1,2, 邹早建1,3, 徐锋1. 一种基于Akaike信息准则的极限学习机[J]. 山东大学学报(工学版), 2011, 41(6): 7-11. |
[9] | 刘成云 陈振学 常发亮. 基于平稳小波的自适应阈值MR图像去噪法[J]. 山东大学学报(工学版), 2009, 39(5): 58-61. |
|