您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 49-55.doi: 10.6040/j.issn.1672-3961.0.2014.374

• • 上一篇    下一篇

隧道深部围岩薄弱区定域控制注浆技术及应用

潘光明,郑东柱   

  1. 山东大学岩土与结构工程研究中心, 山东 济南 250012
  • 收稿日期:2014-12-23 出版日期:2016-02-20 发布日期:2014-12-23
  • 作者简介:潘光明(1969- ),男,山东夏津人,高级工程师,主要研究方向为隧道与地下工程水害防治. E-mail:pgm668@163.com
  • 基金资助:
    国家自然科学基金资助项目(41272385);高等学校博士学科点专项科研基金资助项目(20130131110032);国家青年科学基金项目资助项目(51209128)

Grouting technology and application of the Orientation grouting in weak area of surrounding rock tunneling

PAN Guangming, ZHENG Dongzhu   

  1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250012, Shandong, China
  • Received:2014-12-23 Online:2016-02-20 Published:2014-12-23

摘要: 为解决围岩深部注浆薄弱区加固效果差和存在较大注浆操作风险的难题,提出了定域控制注浆技术。通过对定域注浆器的安全性试验,取得了定域注浆器的抗破坏和止浆后的密闭抗压性可靠数据;通过对薄弱区的安全注浆终压选择试验,获得了满足薄弱区注浆加固质量要求的最大安全注浆终压参数;通过注浆材料及其混合浆液的初凝时间试验,获得了适合定域控制注浆要求的浆液配合比及其安全注浆初凝时间。试验结果表明:膨胀止浆塞的安全充填压力为1.5 MPa,止浆后能抵抗12 MPa的注浆压力;无压状态下溢流孔全部均匀出浆时其总过浆面积应为注浆管内径面积的1.0~1.2倍;薄弱区的安全注浆终压应选在其初期加固后的现实强度和再次劈裂压强之间,为2.5~3.0 MPa;基浆试验密度下配比范围为1∶1~2∶1,初凝时间为150~300 s是安全有效的。定域控制注浆技术在对深部围岩薄弱区的注浆加固中能达到安全隔压、控制浆液进行定域注浆的目的,能较好地解决相关技术难题。

关键词: 隧道围岩, 定域控制注浆, 超前帷幕注浆, 膨胀止浆塞, 薄弱区

Abstract: Orientation grouting technology was proposed to solve the problem of poor grouting effect and higher grouting risk of weak surrounding rock. Reliable data of intensity resistance and pressure resistance were acquired by safety experiment of orientation grouting device. The maximum grouting ending pressure, which could assure the reinforce demand of weak surrounding rock, was acquired by safety grouting ending pressure experiment. Grouting material proportioning and safety and initial setting time were acquired by initial setting time experiment of Grouting material. The results showed that the swell stopper could resist at 12 MPa grouting pressure when the safety filling pressure of swell stopper was 1.5 MPa. Under the condition of non-pressure, the cross section of grouting was 1.0~1.2 times of the cross section of grouting pipe. Safety grouting ending pressure was between initial reinforce strength and again splitting pressure, approximately 2.5~3.0 MPa. It was safe when the grouting material proportioning was between 1∶1~2∶1 and initial setting time was between 150~300 s. Orientation grouting technology could meet the safety separate-pressure demand, and controll the grouting diffusion range.

Key words: advanced curtain grouting, weak area, swell stopper, surrounding rock, orientation grouting

中图分类号: 

  • U453.6+1
[1] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报,2012, 31(10):1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10):1945-1956.
[2] 张民庆. TSS型注浆管及其注浆技术的研究与应用[J]. 铁道工程学报, 2000,66(2):50-57. ZHANG Minqing. Research and application of TSS type grouting pipe and its grouting technology[J]. Journal of Railway Engineering Society, 2000, 66(2):50-57.
[3] 李术才,张伟杰,张庆松,等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学,2014,35(3):744-752. LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on advantage-fracture grouting mechanism and controlled crouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3):744-752.
[4] 任旭华,陈祥荣,单治钢. 富水区深埋长隧洞工程中的主要水问题及对策[J]. 岩石力学与工程学报, 2004,23(11):1924-1929. REN Xuhua, CHEN Xiangrong, SHAN Zhigang. Water problems and corresponding countermeasures in projects of deep-lying long tunnels located in water-rich regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(11):1924-1929.
[5] 崔玖江.隧道与地下工程修建技术[M].北京:科学出版社,2005.
[6] 关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2004.
[7] 张民庆,张梅. 高压富水断层“外堵内固注浆法”设计新理念与工程实践[J]. 中国工程科学, 2009,11(12):26-34. ZHANG Minqing, ZHANG Mei. New concept and engineering practice of “external blockage internal grouting method” for high pressure water-rich fault[J]. Chinese Engineering Science, 2009, 11(12):26-34.
[8] 刘正茂. 高压富水断层超前预注浆快速施工技术研究[J]. 隧道建设, 2011,31(3):359-363. LIU Zhengmao. Rapid advance grouting technology in high-pressure water-rich fault zones[J]. Tunnel Construction, 2011, 31(3):359-363.
[9] 杨秀文. 回弄山隧道断层破碎带特大涌水和突泥施工[J]. 山西建筑, 2007,33(19):156-157. YANG Xiuwen. Water and mud gushing construction in Huinongshan tunnel[J]. Shanxi Architecture, 2007, 33(19):156-157.
[10] 胡文涛. 厦门海底隧道风化深槽全断面帷幕注浆方案设计[J]. 石家庄铁道学院学报, 2007,20(2):130-134. HU Wentao. The design of the full section curtain grouting scheme for the weathered deep groove of xiamen subsea tunnel[J]. Journal of Shijiazhuang Railway Institute, 2007, 20(2):130-134.
[11] 刘文永,王新刚,冯春喜,等.注浆材料与施工工艺[M].北京:中国建筑工业出版社,2008.
[12] 郝哲,王来贵,刘斌.岩体注浆理论与应用[M].北京:地质出版社,2006.
[13] 李相然,贺可强.高压旋喷注浆技术与应用[M].北京:中国建筑工业出版社,2007..
[14] 张民庆. 高压动水砂层溶洞地质注浆加固施工技术[J]. 铁道建筑技术, 2003,(2):11-14. ZHANG Minqing. Construction technology of strengthening water sand karst pressure dynamic grouting[J]. Railway Construction Technology, 2003,(2):11-14.
[15] 李睿,吕言新,李丰果,等. 高压富水岩溶区特长隧道注浆堵水综合技术研究[J]. 中国矿山工程, 2011, 40(5):55-59. LI Rui, LYU Yanxin, LI Fengguo,et al. Comprehensive grouting research of extra-long tunnel shut-off in high-pressure and water-riched zone of karst[J]. China Mine Engineering, 2011, 40(5):55-59.
[16] 金宝. 袖阀管注浆技术在广州地铁某桥基加固中的应用[J]. 施工技术, 2010,39(11):37-41. JIN Bao. Application of sleeve valve pipe grouting technology in bridge pier reinforcement of guangzhou metro project[J]. Construction technology, 2010, 39(11):37-41.
[17] 王昌威. 基坑封底中的袖阀管注浆技术[J]. 施工技术, 2011,40(3):94-96. WANG Changwei. Grouting technology with sleeve valve pipe in foundation excavation bottom sealing[J]. Construction Technology, 2011, 40(3):94-96.
[18] 张民庆,孙国庆. 高压富水断层注浆效果检查评定方法及标准研究[J]. 铁道工程学报, 2009,134(11):50-55. ZHANG Minqing, SUN Guoqing. Research on the examination and evaluation method and standard for grouting effect to the high- pressure and rich- water fault[J]. Journal of Railway Engineering Society, 2009, 134(11):50-55.
[19] 邝健政,昝月稳,王杰.岩土注浆理论与工程实例[M].北京:科学出版社, 2001.
[20] El Tani M. Grouting Rock Fractures with Cement Grout[J]. Rock Mechanics and Rock Engineering, 2012, 45(4):547-561.
[21] 张旭芝,王星华. 劈裂注浆技术在软流塑地层加固中的应用[J]. 西部探矿工程, 2004,97(6):1-2. ZHANG Xuzhi, WANG Xinghua. Application of splitting grouting technology in soft fluid plastic formation[J].West-China Exploration Engineering, 2004, 97(6):1-2.
[22] 周书明,陈建军. 软流塑淤泥质地层地铁区间隧道劈裂注浆加固[J]. 岩土工程学报, 2002,24(2):222-224. ZHOU Shuming, CHEN Jianjun. Hydrofracture grouting in soft flowing mucky ground for a metro tunnel[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2):222-224.
[23] 曾蔚,张民庆. 高压动水粉细砂层充填型溶洞注浆材料研究[J]. 铁道工程学报, 2005,90(6):60-65. ZENG Wei, ZHANG Minqing. Study on silt and fine sand filling type karst cave grouting material dynamic pressure[J]. Journal of Railway Engineering Society, 2005, 90(6):60-65.
[24] 彭峰,张民庆.地下工程注浆技术[M].北京:地质出版社,2008.
[25] 高广义,陈立杰. 象山隧道岩溶段注浆技术优化研究[J]. 隧道建设, 2011,31(1):98-103. GAO Guangyi, CHEN Lijie. Optimization of grouting technologies for karst sections: case study on Xiangshan tunnel[J]. Tunnel Construction, 2011, 31(1):98-103.
[26] 张旭东. 关于岩溶隧道帷幕注浆材料选择的探讨[J]. 地下空间与工程学报, 2005,1(3):432-434. ZHANG Xudong. Study of material for curtain grouting in karst tunnel[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(3):432-434.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 景运革,李天瑞. 基于知识粒度的增量约简算法[J]. 山东大学学报(工学版), 2016, 46(1): 1 -9 .
[2] 徐平安,唐雁,石教开,张辉荣. 基于薛定谔方程的K-Means聚类算法[J]. 山东大学学报(工学版), 2016, 46(1): 34 -41 .
[3] 丁生平, 王永征, 吕瑞杰, 武岳, 姜磊. 基于斯特林机的碟式太阳能热发电系统性能仿真分析[J]. 山东大学学报(工学版), 2014, 44(4): 64 -69 .
[4] 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15 -22 .
[5] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45 -51 .
[6] 熊文涛,冯育强. 基于决策人满意度的区间UTA方法[J]. 山东大学学报(工学版), 2016, 46(2): 72 -77 .
[7] 刘志军. 基于复合混沌与仿射变换的彩色图像加密算法[J]. 山东大学学报(工学版), 2016, 46(4): 1 -8 .
[8] 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法[J]. 山东大学学报(工学版), 2016, 46(6): 31 -39 .
[9] 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40 -47 .
[10] 张莉, 夏佩佩, 李凡长. 基于余弦相似性的供应商选择方法[J]. 山东大学学报(工学版), 2017, 47(1): 1 -6 .