您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 84-90.doi: 10.6040/j.issn.1672-3961.0.2015.098

• 土木工程 • 上一篇    下一篇

车载引起的沥青路面内动水压力现场试验研究

汤潍泽1, 欧金秋2, 崔新壮1, 楼俊杰1, 肖溟1, 张炯1, 黄丹1, 侯飞1   

  1. 1. 山东大学土建与水利学院, 山东济南 250061;
    2. 华夏幸福基业股份有限公司, 北京 100027
  • 收稿日期:2015-04-08 修回日期:2015-06-23 出版日期:2015-12-20 发布日期:2015-04-08
  • 通讯作者: 崔新壮(1974-),男,山东寿光人,教授,博士,博导,主要研究方向为道路岩土力学.E-mail:cuixz@sdu.edu.cn E-mail:cuixz@sdu.edu.cn
  • 作者简介:汤潍泽(1990-),男,河北衡水人,硕士研究生,主要研究方向为道路工程.E-mail:twzawyl@163.com
  • 基金资助:
    国家重点基础研究发展规划(973计划)资助项目(2015CB058101);国家自然科学基金资助项目(51479105,51279094,51308324,51379115);山东省杰出青年基金项目资助(JQ201416);教育部新世纪优秀人才基金资助项目(NCET-13-0340);山东省自然科学基金资助项目(ZR2013EEQ025);中国博士后基金资助项目(2014M561761);(山东大学基本科研业务费资助项目(2014YQ013)

Field test and research on vehicle load induced dynamic pore pressure in asphalt pavement

TANG Weize1, OU Jinqiu2, CUI Xinzhuang1, LOU Junjie1, XIAO Ming1, ZHANG Jiong1, HUANG Dan1, HOU Fei1   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. China Fortune Land Development Company Limited, Beijing 100027, China
  • Received:2015-04-08 Revised:2015-06-23 Online:2015-12-20 Published:2015-04-08

摘要: 为了研究移动车载引起的动水压力对沥青路面水损坏产生的影响,探究路面层内动应力变化及动水压力的长消规律,利用自主研制的耐高温动应力和动水压力传感器,对现场行车荷载引起的动应力及动水压力进行实测,获取了动水压力的实测数据;并且基于Biot固结理论,利用一种反映移动效应的车轮荷载数值模拟方法,对实测工况下路面情况进行了动态流固耦合分析,定量研究了路面层内的动水压力长消规律。发现现场实测与数值模拟结果基本一致。沥青路面在周期行车荷载作用下,路面空隙中不断产生动水压力的泵吸作用,导致沥青混合料强度下降,进而引发水损坏。该成果验证了水损坏的水力驱动机理,为水损坏研究和路面设计提供了借鉴。

关键词: 沥青路面, 水损坏, 数值模拟, 动水压力, 现场测试

Abstract: In order to study the influence on moisture damage of asphalt pavement caused by dynamic pore pressure due to moving vehicle loads, and explore the time histories of dynamic stress and dynamic pore pressure in the pavement surface layers, the heat-resistant dynamic stress and pore pressure sensors were developed and used to measure the dynamic stresses and pore pressures in the field, and the field measured data of dynamic pore pressure was acquired. Based on the Biot's consolidation theory, a numerical fluid-solid coupling simulation method reflecting mobile effect of wheel load was used to analyze the response of pavement under the actual condition. The time history of dynamic pore pressure in pavement was quantitatively analyzed. Numerical simulation results matched well with in situ test data. The pump-suction effect of dynamic pore pressure that continuously generated in pavement void under cyclical vehicle loads led to the reduce of the asphalt-aggregate bond strength and further triggered the moisture damage. This study verified the hydraulic drive mechanism of moisture damage, and provided a theoretical guild for the moisture damage research and pavement design.

Key words: field test, asphalt pavement, dynamic pore pressure, numerical simulation, moisture damage

中图分类号: 

  • TU416.217
[1] 沙庆林. 高速公路沥青路面早期破坏现象及预防[M]. 北京:人民交通出版社,2001.
[2] CHENG D X, LITTLE D N, LYTTON R L. Use of surface free energy properties of the asphalt-aggregate system to predict damage potential[J]. Association of Asphalt Paving Technologist, 2002(71):59-88.
[3] WASIUDDIN N M, FOGLE C M, ZAMAN M M. Effect of antistrip additives on surface free energy characteristics of asphalt binders for moisture-induced damage potential[J]. Journal of Testing and Evaluation, 2007, 35(1):36-44.
[4] 刘亚敏. SMA混合料水稳定性研究[D]. 西安:长安大学,2008. LIU Yamin. Research on moisture susceptibility of stone matrix asphalt[D]. Xi'an:Chang'an University, 2008.
[5] 刘乃科. 沥青路面水损坏机理与防治措施研究[D]. 济南:山东大学,2011. LIU Naike. Mechanism and control methods of water damage of asphalt pavement[D]. Jinan:Shandong University, 2011.
[6] 沈金安. 沥青及沥青混合料路用性能[M]. 北京:人民交通出版社,2001.
[7] 熊竹,杨锐,古曦. 降雨入渗条件下沥青路面渗流规律研究[J]. 中外公路,2012,32(6):111-115. XIONG Zhu, YANG Rui, GU Xi. Seepage law of asphalt pavement under rainfall infiltration[J]. Journal of China & Foreign Highway, 2012, 32(6):111-115.
[8] 杨成忠,邹启贤. 沥青路面水损害机理与防治措施的研究[J]. 筑路机械与施工机械化,2003(4):7-9. YANG Chengzhong, ZOU Qixian. Moisture damage mechanism and prevention measures of asphalt pavement[J]. Road Machinery & Construction Mechanization, 2003(4):7-9.
[9] 赵岳俊. OGDM-19排水下面层沥青混合料组成设计及性能研究[D]. 西安:长安大学,2006. ZHAO Yuejun. Composition design and performance of OGDM-19 drain layer under the asphalt mixture[D]. Xi'an:Chang'an University, 2006.
[10] 姜海波,杨文婷,洪沛. 沥青路面的水损害分析[J]. 森林工程,2004,20(3):49-50. JIANG Haibo, YANG Wenting, HONG Pei. Analysis of asphalt pavement water damage[J]. Forest Engineering, 2004, 20(3):49-50.
[11] 孟庆丽. 浅析半刚性基层沥青路面早期破损[J]. 黑龙江交通科技,2005(9):60-61. MENG Qingli. Analysis of the semi-rigid base asphalt pavement early damage[J]. Communications Science and Technology Heilongjiang, 2005(9):60-61.
[12] 杨世恒. 沥青砼路面水损坏问题浅析[J]. 交通标准化,2005(7):24-27. YANG Shiheng. Elementary discussion on bituminous concrete pavement damage[J]. Communications Standardization, 2005(7):24-27.
[13] 李新宇,刘彦波. 高速公路沥青路面早期破损及防治[J]. 黑龙江交通科技,2005(9):31-32. LI Xinyu, LIU Yanbo. Early damage and control of expressway asphalt pavement[J]. Communications Science and Technology Heilongjiang, 2005(9):31-32.
[14] 吕权. 高速公路沥青路面早期破损及防护浅析[J]. 甘肃科技纵横,2005,34(6):139-140.LYU Quan. Analysis of highway asphalt pavement early damage and protection[J]. Scientific Technical Information of Gansu, 2005, 34(6):139-140.
[15] 崔新壮,金青. 轮载作用下饱水沥青路面的动力响应[J]. 山东大学学报:工学版,2008,38(5):19-24. CUI Xinzhuang, JIN Qing. The dynamic response of saturated asphalt pavement under wheel loads[J]. Journal of Shandong University:Engineering Science, 2008, 38(5):19-24.
[16] CUI X Z, JIN Q, SHANG Q S. Numerical simulation of dynamic pore pressure in asphalt pavement[J]. Journal of Southeast University:English Edition, 2009, 25(1):79-82.
[17] 欧金秋,崔新壮,王聪,等. 考虑车辆移动效应和超载的排水基层路面结构动力分析[J]. 公路,2011(9):1-7. OU Jinqiu, CUI Xinzhuang, WANG Cong, et al. Dynamic response analysis of asphalt concrete pavement with permeable base considering moving and overload effect of vehicles[J]. Highway, 2011(9):1-7.
[18] 欧金秋. 沥青路面水损坏的动水压力驱动机理研究[D]. 济南:山东大学,2012. OU Jinqiu. Dynamic pore water pressure driving mechanism research of asphalt pavement moisture damage[D]. Jinan:Shandong University, 2012.
[19] 李超,欧金秋,崔新壮,等.移动轮载作用下饱和LSPM排水基层路面动力响应分析[J]. 华东公路,2012(3):22-25. LI Chao, OU Jinqiu, CUI Xinzhuang, et al. Dynamic response analysis on moving vehicle load under saturate LSPM drainage base pavement[J]. East China Highway, 2012(3):22-25.
[20] 李少波,张宏超,孙立军. 动水压力的形成与模拟测量[J]. 同济大学学报:自然科学版,2007,35(7):915-918. LI Shaobo, ZHANG Hongchao, SUN Lijun. Development and simulation measurement of dynamic hydraulic pressure[J]. Journal of Tongji University:Natural Science, 2007, 35(7):915-918.
[1] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[2] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[3] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[4] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[5] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[6] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[7] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[8] 崔新壮,黄丹,刘磊,蓝日彦,吕海波,赵艳林,曹卫东,常成利. 沥青路面病害力学研究进展[J]. 山东大学学报(工学版), 2016, 46(5): 68-87.
[9] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[10] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[11] 秦明臣, 董勇, 崔琳, 睢辉, 刘景龙. 双循环湿法烟气脱硫流动传质模拟[J]. 山东大学学报(工学版), 2015, 45(5): 88-94.
[12] 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94.
[13] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
[14] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[15] 周前, 赵德刚. 水平旋喷桩在富水砂层浅埋暗挖隧道中的应用[J]. 山东大学学报(工学版), 2014, 44(4): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!