您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 39-45.doi: 10.6040/j.issn.1672-3961.1.2013.064

• 控制科学与工程 • 上一篇    下一篇

多Agent水质监控系统中的信息融合算法

沈晓晶, 陈明, 池涛   

  1. 上海海洋大学信息学院, 上海 201306
  • 收稿日期:2013-05-14 修回日期:2014-05-30 发布日期:2013-05-14
  • 作者简介:沈晓晶(1972-),女,浙江慈溪人,博士,副教授,主要研究方向为智能控制和计算机视觉.E-mail:xjshen@shou.edu.cn
  • 基金资助:
    国家高科技研究发展计划(863计划)资助项目(2007AA10Z238)

An novel information fusion algorithm of multi-Agent water quality monitoring system

SHEN Xiaojing, CHEN Ming, CHI Tao   

  1. College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
  • Received:2013-05-14 Revised:2014-05-30 Published:2013-05-14

摘要: 在凡纳滨对虾集约化淡水养殖中,温度、pH值、非离子氨质量浓度是3项重要的水质因子,三者之间存在着非线性耦合关系。基于这一耦合关系,提出水质信息融合Agent结构和二级信息融合算法。在融合算法的第一级,采用正向推理机制,基于规则库推断水质因子是否超标。在融合算法的第二级,根据水质因子的耦合关系模型,采用数据库搜索和固定步长搜索策略寻找合适的温度和pH值,通过在线调节温度和pH值的方法,同时将温度、pH值、非离子氨质量浓度调整至合理范围,以满足养殖要求。试验结果表明,信息融合算法能够有效地调节养殖水质,减少换水次数。

关键词: 水产养殖, 信息融合, 多Agent, 正向推理, 智能调控

Abstract: In the intensive freshwater aquaculture of Litopenaeus Vannamei, temperature, pH value, and non-ionic ammonium mass concentration are the three important factors to evaluate water quality. Based on the existing nonlinear coupling relationship among the three factors, the inner structure of water information fusion agent and a novel two-layer-information-fusion-algorithm were proposed. In the first layer of the fusion algorithm, a forward reasoning machine could infer whether or not the water quality factors are out of the standard range based on a rule base. In the sencond layer of the fusion algorithm, database searching and fixed step strategies were adopted to find the proper values of temperature and pH value based on the coupling relationship model of water quality factors. Then, the fusion algorithm adjusted the values of temperature, pH value, and non-ionic ammonium mass concentration to meet the aquaculture requirements. Experimental results showed that the proposed information fusion algorithm could adjust the aquaculture water quality effectively, and reduce the frequency of water exchange.

Key words: aquaculture, forward reasoning, information fusion, intelligent control, multi-Agent

中图分类号: 

  • TP391
[1] O'FLYNN B, REGAN F, LAWLOR A, et al. Experience and recommendations in developing a real-time, water quality monitoring system[J]. Measurement Science and Technology, 2010, 21(12):124004-1-124004-10.
[2] DING Qisheng, MA Daokun, LI Daoliang, et al. Design and implementation of a sensors node oriented water quality monitoring in aquaculture[J]. Sensor Letters, 2010(8):70-74.
[3] 陈明,朱文婷,周汝雁,等.BP神经网络信息融合技术在水质监控中的应用[J].微计算机信息,2010,26(4-1):15-17. CHEN Ming, ZHU Wenting, ZHOU Ruyan, et al. The application of information fusion technology based on BP neural network in water monitoring[J]. Microcomputer Information, 2010, 26(4-1):15-17.
[4] BOUAMAR M, LADJAL M. Performance evaluation of three pattern classification techniques used for water quality monitoring[J]. International Journal of Computational Intelligence and Applications, 2012,11(2):1250013-1-1250013-14.
[5] WANG Huibin, FAN Tanghuai, SHI Aiye, et al. Fuzzy integral based information fusion for water quality monitoring using remote sensing data[J]. International Journal of Communication, Network and System Science, 2010(3):737-744.
[6] 曹广斌,蒋树义,韩世成,等.工厂化水产养殖中的自动控制技术[J].水产学杂志,2011,24(1):60-64. CAO Guangbin, JIANG Shuyi, HAN Shicheng, et al. Automatic technology in recirculating aquaculture system[J]. Chinese Journal of Fisheries, 2011, 24(1):60-64.
[7] 彭芳,周文辉.水产养殖智能监控网络系统的设计与实现[J].自动化与仪表,2012(3):36-39. PENG fang, ZHOU Wenhui. Design and implementation of intelligent control network system for aquaculture[J]. Automation & Instrumentation, 2012(3):36-39.
[8] 范波,潘泉,张洪才,等.在信息融合系统中引入多智能体技术[J].计算机工程与应用,2003,39(22):100-102. FAN Bo, PAN Quan, ZHANG Hongcai, et al. The technology of multi-agent introduced to information fusion system[J]. Computer Engineering and Applications, 2003, 39(22):100-102.
[9] WOOLDRIDGE M.多Agent系统引论[M]. 石纯一,张伟,徐晋晖,译. 北京:电子工业出版社,2003,10. M Wooldridge. An instruction to multiagent systems[M]. Beijing: Publishing House of Electronics Industry, 2003, 10.
[10] 文巨峰,汪加才,邢汉承. 集成Web Services的多Agent分布式计算机审计系统[J].计算机系统应用,2005(10):6-9. WEN Jufeng, WANG Jiacai, XING Hancheng. A distributed multi-agent based computer audit system integrated with web services[J]. Application of the Computer System, 2005(10):6-9.
[11] 吴伟蔚,徐兆坤,陈力华,等.一种用于交通检测的多Agent系统[J].计算机工程,2008,34(2):270-272. WU Weiwei, XU Zaokun, Chen Lihua, et al. Multi-agent system for transportation monitor[J]. Computer Engineering, 2008, 34(2):270-272.
[12] 梅创社. Agent 技术研究与分析[J]. 电子设计工程,2011,19(11):121-124. MEI Chuangshe. Rearch and analysis of agent technology[J]. Electronic Design Engineering, 2011, 19(11):121-124.
[13] 游明英,李益才,彭军.多Agent系统通信设施的设计与实现[J].计算机科学,2007,34(10):230-232. YOU Mingying, LI Yicai, PENG Jun. The design and realization of communication facilities in multi-agent system development[J]. Computer Science, 2007, 34(10):230-232.
[14] 汤琼,杨俊华,蔡彦涛,等. 基于Multi-Agent和JADE的分布式多能源能量系统[J].华东电力,2011,39(5):0793-0796. TANG Qiong, YANG Junhua, CAI Yantao, et al. Distributed multi-energy system based on multi-agent and jade[J]. East China Electric Power, 2011, 39(5):0793-0796.
[15] 唐文彬,朱淼良.一种基于规则推理的BDI模型实现[J]. 计算机科学,2003,30(5):30-32 TANG Wenbin, ZHU Miaoliang. An implementation of BDI model based on rule reasoning[J]. Computer Science, 2003, 30(5):30-32.
[16] 吴超仲,徐成伟.信息融合技术的研究[J]. 信息技术,2008(1):18-20. WU Chaozhong, XU Chengwei. Research on information fusion[J]. Information Technology, 2008(1):18-20.
[17] 蔡志辉.养殖南美白对虾池塘水质调控技术[J]. 中国水产,2006(9):38-40. CAI Zhihui. Water quality control technology for shrimp aquaculture[J]. China Fisheries, 2006(9):38-40.
[18] 贾旭殷,王芳,王春生,等.温度突变和非离子氨对海水和淡水养殖条件下凡纳滨对虾存活的影响[J].中国海洋大学学报,2013,43(10):33-40. JIA Xuyin, WANG Fang, WANG Chunsheng, et al. Effedt of abrupt change in temperature and non-ionic ammonium on survival of litopenaeus vannamei in seawater and freshswater[J]. Periodical of Ocean University of China, 2013, 43(10):33-40.
[19] 刘光明,苏永慧.非离子氨浓度换算方法的改进[J].环境保护科学,1999,25(1):44-46. LIU Guangming, SU Yonghui. Improvement on the method of calculating the concentration of non-ionic ammonia[J]. Environmental Protection Science,1999,25(1):44-46.
[20] 温亮宝,吴报国.基于规则推理的林木病害诊断专家系统[J].农业网络信息,2006(8):19-21. WEN Liangbao, WU Baoguo. Forest disease diagnosis expert system based on rule reasoning[J]. Agriculture Network Information, 2006(8):19-21.
[21] 王友利,侯忠滨. 基于规则推理的刀具材料智能选择系统[J].工具技术,2008(2):27-30. WANG Youli, HOU Zhongbin. Cutting tools materials intelligent selection system based on rule-based-reasoning[J]. Tool Engineering, 2008(2):27-30.
[22] 刘星桥,赵德安,全力,等. 水产养殖智多环境因子控制系统的研究[J]. 农业工程学报,2003,19(3):205-208. LIU Xingqiao, ZHAO Dean, QUAN Li, et al. Reaearch on control system of aquaculture with multi-environmental factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(3):205-208.
[1] 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56.
[2] 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29.
[3] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[4] 李景辉,杨立才*. 基于多传感器信息融合的人体姿态解算算法[J]. 山东大学学报(工学版), 2013, 43(5): 49-54.
[5] 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86.
[6] 于振梅1,杨蓉蓉2,齐凤美3,张晖3,刘凤鸣4. 一种基于免疫稳态维持的Web服务负载均衡模型[J]. 山东大学学报(工学版), 2012, 42(3): 39-44.
[7] 孙甲冰1,2,张承进1*. 有丢包的随机不确定参数系统的最优融合滤波[J]. 山东大学学报(工学版), 2011, 41(6): 59-65.
[8] 张玫1,3,符晓玲2,崔鹏1. 带有乘性噪声的时滞系统多传感器信息融合[J]. 山东大学学报(工学版), 2010, 40(6): 17-23.
[9] 杨立才,叶杨,聂红涛,刘慧慧,林洁 . 基于免疫模糊聚类RBF网络的交通信息融合算法[J]. 山东大学学报(工学版), 2008, 38(5): 1-5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!