山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (1): 85-89.doi: 10.6040/j.issn.1672-3961.0.2012.261
麻常辉1,冯江霞2,蒋哲1,武乃虎1,吕晓禄3
MA Chang-hui1, FENG Jiang-xia2, JIANG Zhe1, WU Nai-hu1, L Xiao-lu3
摘要:
为克服风速与风电功率之间的非线性关系对预测精度的影响,建立了基于时间序列法和神经网络法的改进预测模型。用时间序列法建立风速预测模型;利用神经网络法建立风速-风电功率模型,并以风速预测数据为输入量预测风电功率。以某风电场为例,比较分析了该改进模型与传统预测模型的平均绝对误差和相关系数,结果表明该改进预测模型可有效提高预测精度。
[1] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报(工学版), 2018, 48(5): 95-102. |
[2] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[3] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报(工学版), 2018, 48(5): 77-84. |
[4] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[5] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
[6] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[7] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[8] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[9] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[10] | 辛燕,李景才,任旦元,周民强. 基于IEC信息分类的风电机组可利用率分析与提升方法[J]. 山东大学学报(工学版), 2017, 47(6): 100-107. |
[11] | 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21. |
[12] | 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122. |
[13] | 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228. |
[14] | 谢才科,姜自民,刘玉田,王春义. 海上风电机组低电压穿越远端检测[J]. 山东大学学报(工学版), 2017, 47(4): 110-116. |
[15] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
|