山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 128-134.doi: 10.6040/j.issn.1672-3961.0.2015.210
• • 上一篇
管宁1,栾涛1*,刘志刚2,张承武2,姜桂林2,邱德来2
GUAN Ning1, LUAN Tao1*, LIU Zhigang2, ZHANG Chengwu2, JIANG Guilin2, QIU Delai2
摘要: 为探索变加热功率下微肋阵热沉内的对流换热规律,采用精密机械加工获得圆形、菱形和三角形微肋阵热沉,建立一体式加热试验系统,测试了微肋阵热沉的压力降、流动阻力系数、热阻等对流换热参数,研究Re为0~1 000时微肋阵内阻力及对流换热受加热功率的影响规律。研究结果表明,微肋阵内阻力系数先随加热功率增加而增大,圆形和菱形截面微肋阵中该现象在Re>400时消失,而三角形微肋阵在Re>250时消失。加热功率的增加强化了圆形和菱形截面微肋阵内的对流换热,三角形微肋阵的Nu在Re<250时随加热功率的增加而增大,当Re>250后则有所降低;加热功率对于圆形和菱形微肋阵热沉热阻的影响在Re<600时较为明显,而对于三角形微肋阵当Re>250后加热功率对于热阻的影响基本可以忽略。
中图分类号:
| [1] MOHAMMAD M M, KOK-CHEONG W, MANSOOR S. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels[J]. International Journal of Commumications in Heat and Mass Transfer, 2012, 39(2): 291-297. [2] HAMID R S, MORTEZA F. Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks[J]. International Journal of Thermal Science, 2012, 58:168-179. [3] PELES Y, KO??塁AR A, MISHRA C, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17):3615-3627. [4] KO??塁AR A, MISHRA C, PELES Y. Laminar flow across a bank of low aspect ratio micro pin fins[J]. Journal of Fluids Engineering, 2005, 127(3):419-430. [5] KO??塁AR A, PELES Y. Thermal-hydraulic performance of MEMES-based pin fin heat sink[J]. Journal of Heat Transfer, 2006, 128(2):121-131. [6] MUSTAFA K, MEHMED R O, KO??塁AR A. Parametric study on the effect of end walls on heat transfer and fluidflow across a micro pin-fin[J]. International Journal of Thermal Science, 2011, 50(6):1073-1084. [7] CHANG S W Y W HU. Endwall thermal of performances of radially rotating rectangular channel with pin-fins on skewed rib lands [J]. International Journal of Heat and Mass Transfer, 2014, 69:173-190. [8] 张承武,刘志刚,管宁.加热热通量对微柱群通道内强迫对流换热的影响[J].化工学报,2010,61(12):3080-3085. ZHANG Chengwu, LIU Zhiang, GUAN Ning. Influence of heat flux on forced convective heat transfer in duct with micro-cylinder-group [J]. CIESC Journal, 2010, 61(12):3080-3085. [9] 张承武,浦龙梅,姜桂林等.不同截面形状微肋片内流动阻力特性[J].化工学报,2014,65(6):2042-2048. ZHANG Chengwu, PU Longmei, JIANG Guilin, et al. Resistance characteristics of micro pin fins with different cross-section shapes[J]. CIESC Journal, 2014, 65(6):2042-2048. [10] TULLIUS J F, TULLIUS T K, Bayazitoglu Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15-16):3921-3932. [11] ADEWUMI O O, BELLO-OCHENDE T, MEYER J P. Constructal design of combined microchannel and micro pin fins for electronic cooling[J]. International Journal of Heat and Mass Transfer, 2013, 66:315-323. [12] MOORES K A, KIM J, JOSHI Y. Effect of tip clearance on the thermal and hydrodynamic performance of shrouded pin fin arrays[D]. Maryland: Department of Mechanical Engineering, University of Maryland, 2008. [13] MOORES K A, KIM J, JOSHI Y K. Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance[J]. International Journal of Heat and Mass Transfer, 2009, 52(25-26):5978-5989. [14] REINHARD R, GABRIEL L, KEITH C, et al. Heat transfer in freestanding microchannels with in-line and staggered pin fin structures with clearance[J]. International Journal of Heat and Mass Transfer, 2013, 67:1-15. [15] MEI D Q, LOU XY, QIAN M, et al. Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number[J]. International Journal of Heat and Mass Transfer, 2014, 70:709-718. [16] REYES M, ARIAS J R, VELAZQUEZ A, et al. Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance[J]. Applied Thermal Engineering, 2011, 31(5):887-893. [17] 刘志刚,张承武,管宁.叉排微柱群内顶部间隙对传热效率的影响[J].化工学报,2012,63(4):1025-1031. LIU Zhigang, ZHANG Chengwu, GUAN Ning. Influence of tip clearance on heat transfer efficiency in staggered micro-cylinders-group[J]. CIESC Journal, 2012, 63(4):1025-1031. [18] SHAHABEDDIN K M, YUWEN Z. Analysis of nanofluid effects on thermoelectric cooling by micro-pin-fin heat exchangers[J]. Applied Thermal Engineering, 2014, 70(1):282-290. [19] MUSHTAQ I H. Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nano fluid[J]. Applied Thermal Engineering, 2014, 63(2):598-607. [20] ABAS A, JIMENEZ G, DULIKRAVICH G S. Thermo-fluid analysis of micro pin fin array cooling cofigurations for high heat fluxes with a hot spot[J]. International Journal of Thermal Science, 2015, 90:290-297. [21] MOFFAT R J. Describing the uncertainties in experimental results [J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17. |
| [1] | 田涛,姜鲲,曹峻腾,郭春生. 开槽泡沫金属镍的流动沸腾机理及性能[J]. 山东大学学报 (工学版), 2025, 55(6): 58-68. |
| [2] | 王晓鹏,张志强,赵红霞,柏超,程义广,高晨晨,李广鹏. 大型直冷式制冰机结冰过程的建模[J]. 山东大学学报 (工学版), 2025, 55(6): 83-89. |
| [3] | 宋云飞,张红星,周宇鹏,杨昌鹏,谢永奇. 航天器离心增益式渐开线热管设计及试验研究[J]. 山东大学学报 (工学版), 2025, 55(6): 100-107. |
| [4] | 韩璐,周爱平,孙柯,万田涛,隋高阳,葛智,张洪智. 黄河泥沙对水泥材料性能及微结构的影响[J]. 山东大学学报 (工学版), 2025, 55(3): 121-127. |
| [5] | 张天旭, 刘延俊, 陈云, 薛钢, 王一铭. 海洋温差循环满液式换热器传热计算方法及试验研究[J]. 山东大学学报 (工学版), 2024, 54(6): 167-175. |
| [6] | 郭豪彦,王振军,张海宝,史文涛,况栋梁. 多因素作用下水泥乳化沥青胶浆性能特征及机理[J]. 山东大学学报 (工学版), 2023, 53(1): 25-31. |
| [7] | 逯国强,韩彦龙,韩吉田,陈立海,赵晓强,贺晓. 卧式螺旋管内R134a流动沸腾迟滞现象[J]. 山东大学学报 (工学版), 2022, 52(3): 94-99. |
| [8] | 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108. |
| [9] | 庄培芝,张营超,宋修广,杨鹤,郭志成,胡岩. 考虑尺寸效应的桩侧摩阻力修正计算方法[J]. 山东大学学报 (工学版), 2021, 51(5): 8-15. |
| [10] | 杜文静,赵浚哲,张立新,王湛,季万祥. 换热器结构发展综述及展望[J]. 山东大学学报 (工学版), 2021, 51(5): 76-83. |
| [11] | 李旭,安春国,王兆阳,王湛,季万祥. 火电厂双管式烟囱内筒的流动特性[J]. 山东大学学报 (工学版), 2021, 51(4): 106-110. |
| [12] | 朱向前,魏峥嵘,裴彦良,于凯本,宗乐. 深拖地震线列阵的动力学建模与位置预报[J]. 山东大学学报 (工学版), 2020, 50(6): 9-16. |
| [13] | 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134. |
| [14] | 陈保奎,孙奉仲,高明,史月涛. 湿法脱硫塔一维传热传质性能模型理论与试验[J]. 山东大学学报 (工学版), 2020, 50(5): 56-63. |
| [15] | 祁金胜, 曹洪振, 石岩, 杜文静, 王湛. 虾米腰弯管内置导流板优化[J]. 山东大学学报 (工学版), 2020, 50(5): 64-69. |
|