,相变,传热,广义耗散率," /> ,相变,传热,广义耗散率,"/> 基于<inline-formula id="sddxxbgxb-49-5-72-M1"><img xmlns:xlink="http://www.w3.org/1999/xlink" src="/fileup/inline_graphic/2019/1573435746431_sddxxbgxb-49-5-72-M1.jpg"></img></inline-formula>理论的相变储能换热器传热性能分析
您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 72-84.doi: 10.6040/j.issn.1672-3961.0.2019.151

• 能源与动力工程——制冷技术专题 • 上一篇    下一篇

基于理论的相变储能换热器传热性能分析

周鑫晨(),章学来*(),陈跃,刘璐   

  1. 上海海事大学蓄冷技术研究所, 上海 201306
  • 收稿日期:2019-04-09 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 章学来 E-mail:zhouxinchenaria@sina.com;xlzhang@shmtu.edu.cn
  • 作者简介:周鑫晨(1995—),男,浙江舟山人,硕士研究生,主要研究方向为相变储能技术、脉动热管强化蓄热传热技术. E-mail:zhouxinchenaria@sina.com
  • 基金资助:
    上海市教委重点项目(12ZZ154)

Heat transfer performance analysis of phase change energy storage heat exchanger based on entransy theory

Xinchen ZHOU(),Xuelai ZHANG*(),Yue CHEN,Lu LIU   

  1. Institute of Cool Storage Technology, Shanghai Maritime University, Shanghai 201306, China
  • Received:2019-04-09 Online:2019-10-20 Published:2019-10-18
  • Contact: Xuelai ZHANG E-mail:zhouxinchenaria@sina.com;xlzhang@shmtu.edu.cn
  • Supported by:
    上海市教委重点项目(12ZZ154)

摘要:

理论成功应用于常规换热器的基础上,将传递效率、耗散数及基于耗散的换热器热阻应用于相变储能换热器的传热性能分析中。定义广义耗散率并由此推导出相变储能换热器蓄热、放热及总过程的传递效率及其瞬时值。确定耗散数及基于耗散的换热器热阻计算中换热量的取法。选取一种相变储能装置作为分析对象,通过理论分析绘制各主要部分温度变化趋势,进一步简化得到硅油、水的出口温度表达式,作为算例分析基础。结果表明, 传递效率的应用范围最广,可用于计算相变储能换热器蓄热、放热及总过程的(瞬时)不可逆热损失,且评价结果与传热性能相符,瞬时传递效率随蓄热时间的增加先增大后不变再增大,随放热时间的增加先减小后不变再减小; 耗散数在蓄热过程和总过程中的评价结果与传递效率一致,瞬时耗散数随蓄热时间的增加先减小后不变再减小,然而在放热过程中的应用受限。基于耗散的换热器热阻的部分评价结果与实际不符,应用限制较大。蓄热过程及总过程中,当蓄热量、取热量与蓄、放热阶段时长同步变化时, 传递效率、耗散数与基于耗散的换热器热阻几乎无变化;当装置传热性能提高时, 传递效率增大, 耗散数减小,基于耗散的换热器热阻减小;放热过程中,设置参数的变化不影响装置传热性能, 传递效率基本无变化。

关键词: ')">, 相变, 传热, 耗散率')">广义耗散率

Abstract:

Entransy transfer efficiency, entransy dissipation number and thermal resistance of heat exchanger based on entransy dissipation were applied to heat transfer performance analysis of phase change energy storage heat exchanger on the basis of successful application of entransy theory on conventional heat exchanger. The generalized entransy dissipation rate was defined to derive (instantaneous) entransy transfer efficiency of phase change energy storage heat exchanger in heat storage, heat release and total process, and heat transfer rate was determined to calculate entransy dissipation number and thermal resistance of heat exchanger based on entransy dissipation. A kind of phase change energy storage heat exchanger was selected as the object, and the temperature variation of main parts were described by theoretical analyses. The temperature variation of outlet of silicon oil and water were further simplified to derive their expression, as the basis of calculation and analyses. The results showed that the application range of entransy transfer efficiency was the widest, which was used to calculate the (instantaneous) irreversible heat loss of phase change energy storage heat exchanger in heat storage, heat release and total process. The evaluation results of entransy transfer efficiency were consistent with heat transfer performance and its instantaneous values were increased first, then unchanged, finally increased, with increasing heat storage time, and were decreased first, then unchanged, finally decreased, with increasing heat release time. The evaluation results of entransy dissipation number in heat storage and total process were consistent with that of entransy transfer efficiency. With increasing heat storage time, its instantaneous values were decreased first, then unchanged, finally decreased, while its application was limited in heat release process. The application of thermal resistance of heat exchanger based on entransy dissipation was the most limited since parts of its evaluation results were inconsistent with actual state. In heat storage and total process, the entransy transfer efficiency, entransy dissipation number and thermal resistance of heat exchanger based on entransy dissipation were nearly unchangeable when the heat storage quantity, heat release quantity and stage time in the process of heat storage and release were synchronous. The entransy transfer efficiency was increased, while the entransy dissipation number and the thermal resistance of heat exchanger based on entransy dissipation were decreased when the heat transfer efficiency was improved. In the heat release process, entransy transfer efficiency was unchangeable since the heat transfer performance of system was not influenced by the change of parameters setted.

Key words: entransy, phase change, heat transfer, generalized entransy dissipation rate

中图分类号: 

  • TK02

图1

相变储能换热器"

图2

一种双温储能热管余热回收装置结构图"

图3

一种双温储能热管余热回收装置原理图"

图4

蓄放热过程中装置主要部分的理想温度变化趋势"

图5

蓄放热过程冷热流体温度变化简化图"

图6

蓄热过程中装置、硅油及水的耗散率"

图7

蓄热过程中的瞬时传递效率、瞬时耗散数及瞬时基于耗散的换热器热阻"

表1

相变储能换热器蓄热过程中,qm, h=0.024 kg·s-1,qm, c=0.003 kg·s-1时的传递效率、耗散数及基于耗散的换热器热阻"

τ/s ηh/% ΔE* RE/(K·s·kJ-1)
1 000 92.898 2.718 386.253
2 000 92.879 2.720 385.787
3 000 92.873 2.720 385.631

表2

相变储能换热器蓄热过程中,τ=1 000 s, qm, h=0.024 kg·s-1时的传递效率、耗散数及基于耗散的换热器热阻"

qm, c/(kg·s-1) ηh/% ΔE* RE/(K·s·kJ-1)
0.001 91.019 3.117 443.010
0.002 92.004 2.917 414.632
0.003 92.898 2.718 386.253

图8

放热过程瞬时传递效率"

表3

相变储能换热器总过程中,qm, h=0.024 kg·s-1,qm, c=0.003 kg·s-1时传递效率、耗散数及基于耗散的换热器热阻"

τ/s ηh/% ΔE* RE/(K·s·kJ-1)
1 000 95.131 2.123 603.515
2 000 95.117 2.125 602.914
3 000 95.112 2.126 602.714

表4

相变储能换热器总过程中,τ=1 000 s, qm, c=0.024 kg·s-1时的传递效率、耗散数及基于耗散的换热器热阻"

qm, c/(kg·s-1) ηh/% ΔE* RE/(K·s·kJ-1)
0.001 92.000 2.919 829.690
0.002 93.705 2.521 716.603
0.003 95.131 2.123 603.515

表5

常规换热器的传递效率、耗散数及基于耗散的换热器热阻"

换热器编号 换热流体 T1/K T2/K c/(kJ·kg-1·K-1) qm/(kg·s-1) ηb/% ΔE* RE/(K·s·kJ-1)
1 热流体 431.0 368.7 1.07 0.74 98.81 0.89 2.13
冷流体 312.3 318.5 4.20 1.78
2 热流体 368.0 313.0 2.84 27.78 99.17 0.50 0.01
冷流体 298.0 313.0 4.20 68.88
3 热流体 358.0 313.0 13.49 0.54 99.59 0.47 0.08
冷流体 305.0 315.0 4.04 8.07
1 李建辉, 窦井波, 李永新, 等. 能源-经济-环境系统的可持续发展研究[J]. 科技促进发展, 2017, 13 (7): 509- 515.
LI Jianhui , DOU Jingbo , LI Yongxin , et al. Study on the sustainable development of energy-economy-environment system[J]. Science & Technology for Development, 2017, 13 (7): 509- 515.
2 王君安, 颜永才, 易艳春, 等. 多层次视角下我国能源发展转型历程、困境与对策[J]. 宏观经济管理, 2017, (11): 81- 88.
WANG Jun'an , YAN Yongcai , YI Yanchun , et al. Transformation process, dilemma and countermeasures of China's energy development under multi-level perspective[J]. Macroeconomic Management, 2017, (11): 81- 88.
3 王征. 基于南海局势的我国能源战略发展方向及其相关投资领域[J]. 当代经济管理, 2015, 37 (2): 78- 82.
WANG Zheng . On the development direction of China's energy strategy based on the situation of the South China Sea[J]. Contemporary Economic Management, 2015, 37 (2): 78- 82.
4 连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述[J]. 节能技术, 2011, 29 (2): 123- 128.
LIAN Hongkui , LI Yan , SHU Guangyangzi , et al. An overview of domestic technologies for waste heat utilization[J]. Energy Saving Technology, 2011, 29 (2): 123- 128.
5 MIRO L , GASIA J , CABEZA L F . Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review[J]. Applied Energy, 2016, 179, 284- 301.
doi: 10.1016/j.apenergy.2016.06.147
6 何志兴.中低温工业烟气余热回收的相变储能换热器研究[D].长沙:中南林业科技大学, 2017.
HE Zhixing. A phase change energy storage heat exchanger for recycling the heat of middle or low temperature industrial flue gas[D]. Changsha: Central South University of Forestry and Technology, 2017.
7 黄邦.相变储能换热器的传热特性及其应用研究[D].长沙:中南林业科技大学, 2015.
HUANG Bang. Phase change heat transfer characteristics of heat exchanger and its application research[D]. Changsha: Central South University of Forestry and Technology, 2015.
8 罗孝学, 章学来, 华维三, 等. 一种脉动热管相变蓄放热试验装置的设计[J]. 流体机械, 2017, 45 (4): 63- 67.
LUO Xiaoxue , ZHANG Xuelai , HUA Weisan , et al. Design of pulsating heat pipe type phase change thermal storage experimental device[J]. Fluid Machinery, 2017, 45 (4): 63- 67.
9 任迎蕾, 纪珺, 章学来, 等. 八水合氢氧化钡复合相变材料的制备及热力学性能研究[J]. 材料导报, 2016, 30 (增刊2): 194- 197.
REN Yinglei , JI Jun , ZHANG Xuelai , et al. Preparation and thermal performance of nano-iron, barium carbonate and barium hydroxide octahydrate composite phase change material[J]. Materials Reports, 2016, 30 (Suppl.2): 194- 197.
10 盛强, 邢玉明, 罗恒, 等. 八水氢氧化钡相变材料储热性能实验[J]. 北京航空航天大学学报, 2014, 40 (5): 635- 638.
SHENG Qiang , XING Yuming , LUO Heng , et al. Experiment on thermal storage performance of barium hydroxide octahydrate phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (5): 635- 638.
11 毛发, 章学来, 王友利, 等. 八水合氢氧化钡与相变蓄热容器的相容性研究[J]. 太阳能学报, 2017, 38 (8): 2292- 2296.
MAO Fa , ZHANG Xuelai , WANG Youli , et al. Compatibility study of barium hydroxide octahydrate and phase change heat storage container[J]. Acta Energiae Solaris Sinica, 2017, 38 (8): 2292- 2296.
12 金翼, 黄心宇, 吴文昊, 等. 换热器与相变材料的兼容性研究进展[J]. 应用化学, 2016, 33 (12): 1366- 1374.
JIN Yi , HUANG Xinyu , WU Wenhao , et al. Research progress on compatibility of heat exchanger and phase change materials[J]. Chinese Journal of Applied Chemistry, 2016, 33 (12): 1366- 1374.
13 罗孝学, 章学来, 华维三, 等. 脉动热管相变蓄热器蓄热实验分析[J]. 化工学报, 2017, 68 (7): 2722- 2729.
LUO Xiaoxue , ZHANG Xuelai , HUANG Weisan , et al. Experimental analysis on heat storage of pulsating heat pipe phase change heat accumulator[J]. Journal of Chemical Industry and Engineering, 2017, 68 (7): 2722- 2729.
14 毛发, 章学来, 丁磊, 等. 热管式相变储能系统蓄/放热性能试验[J]. 热力发电, 2016, 45 (11): 48- 53.
MAO Fa , ZHANG Xuelai , DING Lei , et al. Experimental research on heat charging and discharging performance of heat pipe phase change energy storage system[J]. Thermal Power Generation, 2016, 45 (11): 48- 53.
15 陈则韶. 高等工程热力学[M]. 合肥: 中国科学技术大学出版社, 2014: 457- 505.
16 BEJAN A . Entropy generation through heat and fluid flow[M]. New York, USA: John Wiley & Sons, 1982.
17 VARGAS J V C , BEJAN A . Thermodynamic optimization of the match between two streams with phase change[J]. Energy, 2000, 25 (1): 15- 33.
18 SHIBA T , BEJAN A . Thermodynamic optimization of geometric structure in the counterflow heat exchanger for an environmental control system[J]. Energy, 2001, 26 (5): 493- 512.
doi: 10.1016/S0360-5442(01)00011-1
19 ZIMPAROV V D , SILVA A K D , BEJAN A . Thermodynamic optimization of tree-shaped flow geometries with constant channel wall temperature[J]. International Journal of Heat and Mass Transfer, 2006, 49 (25/26): 4839- 4849.
20 BAHIRAEI M , JAMSHIDMOFID M , HESHMATIAN S . Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution[J]. Advanced Powder Technology, 2017, 28 (9): 2380- 2392.
doi: 10.1016/j.apt.2017.06.021
21 ZHANG Z , JIANG C , ZHANG Y , et al. Virtual entropy generation (VEG) method in experiment reliability control: implications for heat exchanger measurement[J]. Applied Thermal Engineering, 2017, 110, 1476- 1482.
doi: 10.1016/j.applthermaleng.2016.09.051
22 ZHANG Z , ZHANG Y , ZHOU W , et al. Critical heat balance error for heat exchanger experiment based on entropy generation method[J]. Applied Thermal Engineering, 2016, 94, 644- 649.
doi: 10.1016/j.applthermaleng.2015.11.005
23 HUMINIC G , HUMINIC A . Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers[J]. International Communications in Heat and Mass Transfer, 2016, 71, 118- 125.
doi: 10.1016/j.icheatmasstransfer.2015.12.031
24 过增元, 梁新刚, 朱宏晔. :描述物体传递热量能力的物理量[J]. 自然科学进展, 2006, 16 (10): 1288- 1296.
GUO Zengyuan , LIANG Xingang , ZHU Hongye . Entransy: a physical quantity describing heat transfer ability[J]. Progress in Natural Science, 2006, 16 (10): 1288- 1296.
25 郭江峰, 程林, 许明田. 耗散数及其应用[J]. 科学通报, 2009, 54 (19): 2998- 3002.
GUO Jiangfeng , CHENG Lin , XU Mingtian . Entransy dissipation number and its application to heat exchanger performance evaluation[J]. Chinese Science Bulletin, 2009, 54 (19): 2998- 3002.
26 柳雄斌, 孟继安, 过增元. 基于耗散的换热器热阻分析[J]. 自然科学进展, 2008, 18 (10): 1186- 1190.
LIU Xiongbin , MENG Ji'an , GUO Zengyuan . The analysis of thermal resistance of heat exchanger based on entransy dissipation[J]. Progress in Natural Science, 2008, 18 (10): 1186- 1190.
27 陈彦龙, 王馨, 滕小果. 基于与熵产分析的最优相变温度研究[J]. 工程热物理学报, 2012, 33 (9): 1597- 1600.
CHEN Yanlong , WANG Xin , TENG Xiaoguo . Optimal phase change temperature based on entransy and entropy generation analyses[J]. Journal of Engineering Thermophysics, 2012, 33 (9): 1597- 1600.
28 杨世铭, 陶文铨. 传热学[M]. 4版 北京: 高等教育出版社, 2006: 484.
29 孙星星.低温烟气余热回收用气-液式热管换热器研究[D].重庆:重庆大学, 2016: 27-69.
SUN Xingxing. Research of gas-liquid heat pipe exchanger used in recovery of flue gas heat at low temperature[D]. Chongqing: Chongqing University, 2016: 27-69.
30 王开锋.管壳式换热器设计和换热网络综合同步优化[D].大连:大连理工大学, 2016: 26-28
WANG Kaifeng. Simultaneous optimization of shell-and-tube heat-exchanger design and heat exchanger network synthesis[D]. Dalian: Dalian University of Technology, 2016: 26-28.
[1] 柳洋,朱波,陈超伟,陈岩,辛公明. 多热源冷却的新型环路热管设计及性能[J]. 山东大学学报 (工学版), 2025, 55(6): 90-99.
[2] 王晓鹏,张志强,赵红霞,柏超,程义广,高晨晨,李广鹏. 大型直冷式制冰机结冰过程的建模[J]. 山东大学学报 (工学版), 2025, 55(6): 83-89.
[3] 宋云飞,张红星,周宇鹏,杨昌鹏,谢永奇. 航天器离心增益式渐开线热管设计及试验研究[J]. 山东大学学报 (工学版), 2025, 55(6): 100-107.
[4] 张天旭, 刘延俊, 陈云, 薛钢, 王一铭. 海洋温差循环满液式换热器传热计算方法及试验研究[J]. 山东大学学报 (工学版), 2024, 54(6): 167-175.
[5] 杜文静,赵浚哲,张立新,王湛,季万祥. 换热器结构发展综述及展望[J]. 山东大学学报 (工学版), 2021, 51(5): 76-83.
[6] 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134.
[7] 陈保奎,孙奉仲,高明,史月涛. 湿法脱硫塔一维传热传质性能模型理论与试验[J]. 山东大学学报 (工学版), 2020, 50(5): 56-63.
[8] 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107.
[9] 管宁,栾涛,刘志刚,张承武,姜桂林,邱德来. 变加热功率下不同形状微肋阵热沉内的对流换热[J]. 山东大学学报(工学版), 2016, 46(2): 128-134.
[10] 吴艳艳, 孙奉仲, 李飞, 陈昌贤. H型翅片管束空气流动及换热特性[J]. 山东大学学报(工学版), 2014, 44(6): 90-94.
[11] 冀翠莲, 韩吉田, 尹静, 陈常念, 任立波, 孔令健. 螺旋管内流动沸腾传热系数关联式拟合与误差分析[J]. 山东大学学报(工学版), 2014, 44(5): 83-87.
[12] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[13] 陈昌贤, 孙奉仲, 李飞, 吴艳艳. 四分仓回转式空气预热器热力计算方法[J]. 山东大学学报(工学版), 2014, 44(4): 58-63.
[14] 李飞, 孙奉仲, 史月涛, 马磊. 圆管管束特性试验及协同分析[J]. 山东大学学报(工学版), 2014, 44(4): 70-75.
[15] 程屾, 孙奉仲*. 渗层不锈钢管束表面真空下换热特性的实验分析[J]. 山东大学学报(工学版), 2014, 44(1): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[6] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[7] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[8] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .
[9] 孙玉利,李法德,左敦稳,戚美 . 直立分室式流体连续通电加热系统的升温特性[J]. 山东大学学报(工学版), 2006, 36(6): 19 -23 .
[10] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .