山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (3): 1-7.doi: 10.6040/j.issn.1672-3961.0.2017.601
• 机器学习与数据挖掘 • 下一篇
Wei XUE(
),Dongcheng TAN,Mei ZHANG,Shilong LIU
摘要:
对广义增广Lü四翼超混沌系统进行分析,采用非线性控制同步方法实现该超混沌系统的自同步,理论分析所设计的非线性同步控制器的正确性和有效性。对该超混沌系统及其非线性控制同步进行FPGA硬件电路设计与实现,硬件试验结果和数值仿真结果及理论分析结果一致。提出一种基于该超混沌系统非线性同步的混沌掩盖保密视频通信方案,并对该保密通讯方案进行field programmable gate array硬件试验,试验结果表明:该保密通信方案有效、可行,并具有良好的保密性。
中图分类号:
| 1 | 陈关荣, 吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003. |
| 2 |
HEMATI N . Strange attractors in brushless DC motors[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1994, 41 (1): 40- 45.
doi: 10.1109/81.260218 |
| 3 | PASINI A , PELINO V . A unified view of Kolmogorov and Lorenz systems[J]. Physics Letters A, 2000, 275 (5): 435- 446. |
| 4 |
KNOBLOCH E . Chaos in the segmented disc dynamo[J]. Physics Letters A, 1981, 82 (9): 439- 440.
doi: 10.1016/0375-9601(81)90274-7 |
| 5 |
PECORA L M , CARROLL T L . Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64 (8): 821- 824.
doi: 10.1103/PhysRevLett.64.821 |
| 6 | LAKSHMANAN M, MURALI K. Chaos in nonlinear oscillators: controlling and synchronization[M].[S.l.]: World Scientific, 1996. |
| 7 |
CELKA P . Chaotic synchronization and modulation of nonlinear time-delayed feedback optical systems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, 42 (8): 455- 463.
doi: 10.1109/81.404049 |
| 8 |
AGIZA H N , YASSEN M T . Synchronization of Rossler and Chen chaotic dynamical systems using active control[J]. Physics Letters A, 2001, 278 (4): 191- 197.
doi: 10.1016/S0375-9601(00)00777-5 |
| 9 | LI D , LU J , WU X . Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems[J]. Chaos Solitons & Fractals, 2005, 23 (1): 79- 85. |
| 10 | LYU J , ZHOU T , ZHANG S . Chaos synchronization between linearly coupled chaotic systems[J]. Chaos Solitons & Fractals, 2002, 14 (4): 529- 541. |
| 11 | PARK J H . Stability criterion for synchronization of linearly coupled unified chaotic systems[J]. Chaos Solitons & Fractals, 2005, 23 (4): 1319- 1325. |
| 12 | CHEN H K . Global chaos synchronization of new chaotic systems via nonlinear control[J]. Chaos Solitons & Fractals, 2005, 23 (4): 1245- 1251. |
| 13 | CHEN M , HAN Z . Controlling and synchronizing chaotic Genesio system via nonlinear feedback control[J]. Chaos Solitons & Fractals, 2003, 17 (4): 709- 716. |
| 14 | 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45 (6): 45- 51. |
| SUN Meimei , HU Yun'an , WEI Jianmin . Synchronization of multi-wing hyperchaotic systems via adaptive sliding mode control[J]. Journal of Shandong University (Engineering Science), 2015, 45 (6): 45- 51. | |
| 15 | 孟晓玲, 王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2017, 47 (6): 1- 6. |
| MENG Xiaoling , WANG Jianjun . Chaos synchronization of a class of fractional order coronary artery systems[J]. Journal of Shandong University (Engineering Science), 2017, 47 (6): 1- 6. | |
| 16 | 毛北行, 王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47 (3): 79- 83. |
| MAO Beixing , WANG Dongxiao . Sliding model chaos synchronization control of a class of fractional-order multi-scroll systems[J]. Journal of Shandong University (Engineering Science), 2017, 47 (3): 79- 83. | |
| 17 |
CUOMO K M , OPPENHEIM A V , STROGATZ S H . Synchronization of Lorenz-based chaotic circuits with applications to communications[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1993, 40 (10): 626- 633.
doi: 10.1109/82.246163 |
| 18 |
朱艳平, 张小红. CNN超混沌同步保密通信系统的研究[J]. 计算机应用与软件, 2009, 26 (2): 83- 84.
doi: 10.3969/j.issn.1000-386X.2009.02.027 |
|
ZHU Yanping , ZHANG Xiaohong . On secure communication system of CNN hyperchaotic synchronization[J]. Computer Applications and Software, 2009, 26 (2): 83- 84.
doi: 10.3969/j.issn.1000-386X.2009.02.027 |
|
| 19 | PRASAD M , SUDHA K L . Chaos image encryption using pixel shuffling[J]. Dimension, 2011, 1 (2): 169- 179. |
| 20 |
ZHANG D , ZHANG F . Chaotic encryption and decryption of JPEG image[J]. Optik-International Journal for Light and Electron Optics, 2014, 125 (2): 717- 720.
doi: 10.1016/j.ijleo.2013.07.069 |
| 21 | 薛薇, 徐进康, 贾红艳. 一个分数阶超混沌系统同步及其保密通信研究[J]. 系统仿真学报, 2016, 28 (8): 1915- 1921. |
| XUE Wei , XU Jinkang , JIA Hongyan . Study of synchronization for fractional-order hyperchaotic system and its application in secure communication[J]. Journal of System Simulation, 2016, 28 (8): 1915- 1921. | |
| 22 | PARK J H . Chaos synchronization of a chaotic system via nonlinear control[J]. Chaos Solitons & Fractals, 2005, 25 (1): 175- 179. |
| 23 | XUE W , FANG Y , LI Q . A novel four-wing hyper-chaotic system and its circuit implementation[J]. Procedia Engineering, 2012, 29 (4): 1264- 1269. |
| [1] | 张恒旭,马睿聪,曹永吉,刘奕敏,邹世豪. 新型电力系统同步稳定研究综述及展望[J]. 山东大学学报 (工学版), 2025, 55(2): 1-15. |
| [2] | 王士柏,孙树敏,程艳,周光奇,关逸飞,刘奕元,张志谦,张祯滨. 计及SOC安全边界的光储联合系统协同控制策略[J]. 山东大学学报 (工学版), 2025, 55(2): 37-44. |
| [3] | 蒋哲,田浩,朱元振,邢法财,王延团,叶华,牟倩颖. 基于实时阻抗辨识的跟网型变换器同步稳定性量化评估方法[J]. 山东大学学报 (工学版), 2024, 54(6): 139-146. |
| [4] | 王术剑,阎宗尧,刘世杰,田源. 路侧激光雷达与摄像机时间和空间同步方法[J]. 山东大学学报 (工学版), 2022, 52(6): 56-62. |
| [5] | 贾红艳,陈忠告,石文欣,韩晓光. 一个具有多稳定流的广义Hamiltonian保守混沌系统[J]. 山东大学学报 (工学版), 2022, 52(2): 74-79. |
| [6] | 周风余,顾潘龙,万方,尹磊,贺家凯. 多运动视觉里程计的方法与技术[J]. 山东大学学报 (工学版), 2021, 51(1): 1-10. |
| [7] | 程春蕊,毛北行. 一类非线性混沌系统的自适应滑模同步[J]. 山东大学学报 (工学版), 2020, 50(5): 1-6. |
| [8] | 孟晓玲,毛北行. 含对数项分数阶T混沌系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(5): 7-12. |
| [9] | 程春蕊. 分数阶Brussel系统混沌同步的三种控制方案[J]. 山东大学学报 (工学版), 2020, 50(4): 46-51. |
| [10] | 王春彦,邸金红,毛北行. 基于新型趋近律的参数未知分数阶Rucklidge系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(4): 40-45. |
| [11] | 麻常辉,王亮,谭邵卿,卢奕,马欢,赵康. 考虑同步调相机无功特性的多馈入直流同时换相失败风险评估方法[J]. 山东大学学报 (工学版), 2020, 50(3): 98-103. |
| [12] | 李彩虹,方春,王志强,夏斌,王凤英. 基于超混沌同步控制的移动机器人全覆盖路径规划[J]. 山东大学学报 (工学版), 2019, 49(6): 63-72. |
| [13] | 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报 (工学版), 2018, 48(5): 85-90. |
| [14] | 王春彦, 邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报 (工学版), 2018, 48(5): 91-94. |
| [15] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
|