您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 34-39.doi: 10.6040/j.issn.1672-3961.0.2017.433

• • 上一篇    下一篇

基于卷积神经网络的中文财经新闻分类方法

谢志峰1,2,吴佳萍1,马利庄2,3   

  1. 1. 上海大学影视工程系, 上海 200072;2. 上海电影特效工程技术研究中心, 上海 200072;3. 上海交通大学计算机科学与工程系, 上海 200240
  • 收稿日期:2017-08-29 出版日期:2018-06-20 发布日期:2017-08-29
  • 作者简介:谢志峰(1982— ),男,江苏如东人,博士,讲师,主要研究领域为信息处理、深度学习等. E-mail:zhifeng-xie@shu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61303093,61402278,61472245);上海市科委科技攻关资助项目(16511101300)

Chinese financial news classification method based on convolutional neural network

XIE Zhifeng1,2, WU Jiaping1, MA Lizhuang2,3   

  1. 1. Department of Film and Television Engineering, Shanghai University, Shanghai 200072, China;
    2. Shanghai Engineering Research Center of Motion Picture Special Effects, Shanghai 200072, China;
    3. Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2017-08-29 Online:2018-06-20 Published:2017-08-29

摘要: 针对目前财经领域内新闻数据杂乱无章、缺乏自动高效管理等问题,提出一种基于卷积神经网络的中文财经新闻分类方法。收集大规模财经新闻语料,通过无监督学习方法训练获得一个广义通用的财经类词向量模型,将词向量引入到卷积神经网络模型训练中实现有效分类。与传统方法相比,基于卷积神经网络的中文财经新闻分类方法网络模型结构简单,针对小样本集也能表现优异的性能,不仅能有效解决中文财经新闻分类问题,还可充分证明卷积神经网络在处理文本分类问题中的有效性。

关键词: 财经新闻, 卷积神经网络, 词向量, 自然语言处理, 深度学习, 文本分类

Abstract: In order to complete the task of financial news classification, a new method based on convolutional neural network for the classification of Chinese financial news was presented. A simple CNN was trained with one layer of convolution on top of word vectors obtained from an unsupervised neural language model. These vectors were trained on a large number of financial news corpus. Compared with the traditional methods, the network model based on convolutional neural network was simple in structure, which could show excellent performance by using small sample set. The method not only could solve the Chinese financial news classification problem effectively, but also prove the effectiveness of convolutional neural network in dealing with problems of text classification fully.

Key words: financial news, convolutional neural network, natural language processing, deep learning, word vector, text classification

中图分类号: 

  • TP391.1
[1] WANG S, MANNING C D. Baselines and bigrams: Simple, good sentiment and topic classification[C] //Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: ACL, 2012: 90-94.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 60(2): 1097-1105.
[3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C] //Proceedings of Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE, 2015: 1-9.
[4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-06-20]. https://arxiv.org/pdf/1409.1556v6.pdf.
[5] 徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. XU Shanshan, LIU Ying'an, XU Sheng. Wood defects recognition based on the convolutional neural network[J]. Journal of Shandong University(Engineering Science), 2013, 43(2): 23-28.
[6] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445-1565. XI Xuefeng, ZHOU Guodong. A survey on deep learning for natural language processin[J]. Acta Automatica Sinica, 2016, 42(10): 1445-1565.
[7] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2006, 3(6):1137-1155.
[8] FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C] //Iberoamerican Congress on Pattern Recognition. Berlin, Germany: Springer, 2012: 14-36.
[9] MNIH A, HINTON G. A scalable hierarchical distributed language model[C] //International Conference on Neural Information Processing Systems. Vancouver, Canada: NIPS, 2008: 1081-1088.
[10] SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C] //Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, Britain: ACL, 2011: 151-161.
[11] COLLOBERT R, WESTON J,BOTTOU L, et al. Natural language processing(almost)from scratch[J]. The Journal of Machine Learning Rearch, 2011, 12(1): 2493-2537.
[12] MIOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS, 2013: 3111-3119.
[13] ZHOU Shusen, CHEN Qingcai, WANG Xiaolong. Convolutional active deep learning method for semi-supervised sentiment classification[J]. Necuro computing, 2013, 120(10): 536-546.
[14] JOHNSON R, ZHANG T. Effective use of word order for text categorization with convolutional neural networks[J]. Eprint Arxiv, 2014:1412.
[15] BLUNSOM P, GREFENSTEEN E, KALCHBRENNER N. et al. Aconovolutional neural network for modelling sentences[C] //Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: ACL, 2014: 655-665.
[16] KIM Y. Convolutional neural networks for sentence classification[C] //Proceedings of the EMNLP. Doha, Qatar: Association for Computational Linguistics, 2014: 1746-1751.
[17] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1301.3781v3.pdf
[18] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1207.0580v1.pdf.
[19] 唐明,朱磊,邹显春. 基于Word2vec的一种文档向量表示[J]. 计算机科学,2016, 43(6): 264-269. TANG Ming, ZHU Lei, ZOU Xianchun, et al. Documenl vector representation based on Word2vec[J]. Computer Science, 2016, 43(6): 264-269.
[20] 陈钊,徐睿峰,桂林,等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29(6): 172-178. CHEN Zhao, XU Ruifeng, GUI Lin, et al. Combining convolutional neural networks and word sentiment sequence features for Chinese text sentiment analysis[J]. Processing of Journal of chinese Imformation, 2015, 29(6): 172-178.
[21] ZEILER M. ADADELTA: An adaptive learning rate method[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1212.5701v1.pdf.
[22] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C] //Proceedings of COMPATAT’2010. Berlin, Germany: Springer, 2010: 177-186.
[23] SOCHER B, HUVAL C, MANNING A. Semantic compositionality through recursive matrix-vector spaces[C] //Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: ACL, 2012: 1201-1211.
[24] DONG L, LIU S J, ZHOU M, et al. A statistical parsing framework for sentiment classification[J]. Computational Linguistic, 2015, 41(2): 293-336.
[25] NAKAGAWA K, INUI S, KUROHASHI S. Dependency tree-based sentiment classification using CRFs with hidden variables[C] //The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, USA: ACL, 2010: 786-794.
[1] 李常刚,李宝亮,曹永吉,王佳颖. 人工智能在电力系统潮流计算中的应用综述及展望[J]. 山东大学学报 (工学版), 2025, 55(5): 1-17.
[2] 周群颖,隋家成,张继,王洪元. 基于自监督卷积和无参数注意力机制的工业品表面缺陷检测[J]. 山东大学学报 (工学版), 2025, 55(4): 40-47.
[3] 薛冰冰,王勇,杨维浩,王川,于迪,王旭. 基于ETC收费数据的高速公路交通流数据修复及实时预测[J]. 山东大学学报 (工学版), 2025, 55(3): 58-71.
[4] 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79.
[5] 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76.
[6] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[7] 陈晓江,杨晓奇,陈广豪,刘伍颖. 混合BERT和宽度学习的低时间复杂度短文本分类[J]. 山东大学学报 (工学版), 2024, 54(4): 51-58.
[8] 索大翔,李波. 基于Gromov-Wasserstein最优传输的输电线路小目标检测方法[J]. 山东大学学报 (工学版), 2024, 54(3): 22-29.
[9] 宋辉,张轶哲,张功萱,孟元. 基于类权重和最小化预测熵的测试时集成方法[J]. 山东大学学报 (工学版), 2024, 54(3): 36-43.
[10] 马翔悦,徐金东,倪梦莹. 基于多尺度特征模糊卷积神经网络的遥感图像分割[J]. 山东大学学报 (工学版), 2024, 54(3): 44-54.
[11] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[12] 聂秀山,巩蕊,董飞,郭杰,马玉玲. 短视频场景分类方法综述[J]. 山东大学学报 (工学版), 2024, 54(3): 1-11.
[13] 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79.
[14] 高泽文,王建,魏本征. 基于混合偏移轴向自注意力机制的脑胶质瘤分割算法[J]. 山东大学学报 (工学版), 2024, 54(2): 80-89.
[15] 肖伟, 郑更生, 陈钰佳. 结合自训练模型的命名实体识别方法[J]. 山东大学学报 (工学版), 2024, 54(2): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[2] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[3] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[4] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[5] 孙媛媛 徐衍亮 姚之宁. 旁磁制动单相感应电动机制动力的分析与计算[J]. 山东大学学报(工学版), 2009, 39(5): 120 -123 .
[6] 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47 -52 .
[7] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[8] 乔小燕. 赤潮藻显微图像自动识别方法[J]. 山东大学学报(工学版), 2016, 46(3): 1 -6 .
[9] 王会青,孙宏伟,张建辉. 基于Map/Reduce的时间序列相似性搜索算法[J]. 山东大学学报(工学版), 2016, 46(1): 15 -21 .
[10] 张宏博 黄茂松 宋修广. 基于应变软化与剪胀性特征的粉砂土双硬化弹塑性本构模型[J]. 山东大学学报(工学版), 2008, 38(6): 55 -60 .