JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2014, Vol. 44 ›› Issue (6): 83-89.doi: 10.6040/j.issn.1672-3961.0.2014.058

Previous Articles     Next Articles

Molecular dynamics simulation of zwitterionic surfactant sulfobetaine at the vapor/liquid interface

WANG Lijuan, SHI Jing, ZHAO Fangjian   

  1. Geological Scientific Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257015, Shandong, China
  • Received:2014-03-03 Revised:2014-09-25 Published:2014-03-03

Abstract: The aggregation morphology of zwitterionic surfactant dodecyl hydroxy-propyl sulfobetaine at the vapor-liquid interface was investigated using molecular dynamics method, and the effect of film stability was discussed. Depending on the interface formation energy, the increasing number of surfactant molecules at the interface helped the stability of liquid membrane. Through the radial distribution functions between the head groups of surfactant and water molecules, the water molecules around surfactant molecules were divided into three types, bound water, trapped water and free water. There were important relationships between the stability of foam and the ability of surfactant binding with water molecules through hydrogen bonding and electrostatic interaction. The results showed that this zwitterionic surfactant had strong binding effect to water molecules in the stability of foam.

Key words: zwitterionic surfactant dodecyl hydroxy-propyl sulfobetaine, vapor-liquid interface, foam, molecular dynamics simulation, molecular conformation, monolayer

CLC Number: 

  • O641
[1] 王增林. 强化泡沫驱提高原油采收率技术[M]. 北京: 中国科学技术出版社, 2007.
[2] OWETE S, BRIGHAM W E. Flow behavior of foam: a porous micromodel study[J]. Society of Petroleum Engineers Journal, 1987, 2(3):315-323.
[3] HELLER J P, CHENG L L, KUNTAMUKKULA M S. Foam like dispersions for mobility control in CO2 floods[J]. Society of Petroleum Engineers Journal, 1985, 25(4):603-613.
[4] OSTERLOH W T, JANTE M J. Effects of gas and liquid velocity on steady-state foam flow at high temperature [C]//SPE Annual Technical Conference and Exhibition. Tulsa, Oklahoma:Society of petroleum engineers, 1992:24179.
[5] LARSON K, VAKNIN D, VILLAVICENCIO O, et al. Molecular packing of amphiphiles with crown polar heads at the air-water interface[J]. Journal of Physical Chemistry B, 2002, 106(29):7246-7251.
[6] BARLOW D J, MA G, WEBSTER J R P, et al. Structure of the monolayer formed at an air-water interface by a novel nonionic (vesicle-forming) surfactant[J]. Langmuir, 1997, 13(14):3800-3806.
[7] ABE M, TSUBONE K, KOIKE T, et al. Polymerizable cationic Gemini surfactant[J]. Langmuir, 2006, 22(20):8293-8297.
[8] YUAN S, MA L, ZHANG X, et al. Molecular dynamics studies on monolayer of cetyltrimethyl ammonium bromide surfactant formed at the air/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289(1-3):1-9.
[9] ZHAO T, XU G, YUAN S, et al. Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts[J]. Journal of Physical Chemistry B, 2010, 114(15):5025-5033.
[10] HE X, GUVENCH O, MACKERELL A D, et al. Atomistic simulation study of linear alkylbenzene sulfonates at the water/air interface[J]. Journal of Physical Chemistry B, 2010, 114(30):9787-9794.
[11] 王业飞,于维钊,胡松青. 羟基取代双烷烃链苯磺酸盐水气界面单层膜的分子动力学模拟[J]. 中国石油大学学报:自然科学版,2011,35(6):153-158. WANG Yefei, YU Weizhao, HU Songqing, et al. Molecular dynamics simulation of hydroxyl substituting dialkyl benzene sulfonate self-assembly membrane at air-water interface[J]. Journal of China University of Petroleum:Natural Science Edition, 2011, 35(6):153-158.
[12] 苑世领,崔鹏,徐桂英,等. 气液界面上阴离子表面活性剂单层膜的分子动力学模拟[J]. 化学学报,2006,64(16):1659-1664. YUAN Shiling, CUI Peng, XU Guiying, et al. Molecular dynamics on the monolayer of anionic surfactant at vapor/liquid interface[J]. Acta Chim Sinica, 2006, 64(16):1659-1664.
[13] 李晓锋,李应成,吴智勇,等. 非离子表面活性剂在气液界面的分子动力学模拟[J]. 化学学报,2011,69(19):2235-2240. LI Xiaofeng, LI Yingcheng, WU Zhiyong, et al. Molecular dynamics simulations of nonionic surfactant at the aAir/water interface[J]. Acta Chim Sinica, 2011, 69(19):2235-2240.
[14] 胡晓莹,李英,张辉,等. 泡沫液膜的分子动力学模拟及泡沫析液机制的研究[J]. 化学学报,2010,68(2):131-135. HU Xiaoying, LI Ying, ZHANG Hui, et al. Molecular dynamics simulation of foam films and analysis of foam drainage mechanism[J]. Acta Chim Sinica, 2010, 68(2):1659-1664.
[15] ERNST R, ARDITTI J. Biological effects of surfactants Ⅶ growth and development of brassocattley (orchidaceae) seedlings[J]. New Phytologist, 1984, 96(2):197-205.
[16] LIU G, GU D, LIU H, et al. Thermodynamic properties of micellization of sulfobetaine-type zwitterionic gemini surfactants in aqueous solutions: a free energy perturbation Study[J]. Journal of Colloid and Interface Science, 2012, 375(1):148-153.
[17] YOSSHIMURA T, ICHINOKAWA T, KAJI M, et al. Synthesis and surfaceactive properties of sulfobetaine-type zwitterionic gemini surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 273(1-3):208-212.
[18] 江建林,郭东方,李雪峰,等. 胡状集油田胡5-15井区天然混合羧酸盐/黄胞胶驱油先导试验[J]. 油田化学,2003,20(1):58-60. JIANG Jianlin, GUO Dongfang, LI Xuefeng, et al. Pilot field trial of natural mixed carboxylates/xanthan flood at well block H5-15 of huzhuangji oil field[J]. Oilfield Chemistry, 2003, 20(1):58-60.
[19] PAI Y H, CHEN L J. Viscosity and density of dilute aqueous solutions of 1-pentanol and 2-methyl-2-butanol[J]. J Chem Eng Data, 1998, 43(4):665-667.
[20] Accelrys Inc. Materials studio[CP]. Version 4.4. San Diego:Accelrys Inc, 2008.
[21] SUN H, REN P, FRIED J R. Condensed-phased optimized molecular potential for atomistic simulation studies[J]. Comput Theor Polym Sci, 1998, 8(1-2):229-246.
[22] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. Oxford:Clarendon Press, 1987.
[23] ANDERSON H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys, 1980, 72(4):2384-2393.
[24] ANDERSON H C. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations[J]. J Comput Phys, 1983, 52(1):24-34.
[25] AHMED D, LUDWIK A, GUIDO M. Density functional theory study of the hydrogen-bonded pyridine-H2O complex: a comparison with RHF and MP2 methods and with experimental data[J]. Journal of Physical Chemistry A, 2000, 104(10):2112-2119.
[26] OLEG V S, LEONID G, JERZY L. Does the hydrated cytosine molecule retain the canonical structure? A DFT study[J]. Journal of Physical Chemistry B, 2000, 104(22):5357-5361.
[27] Gaussian Inc. Gaussian 03[CP]. Revision C. 01. Wallingford, CT:Gaussian Inc, 2004.
[28] 刘宏生,吕昌森,杨莉,等. AOS 与 CHSB 复配体系的表面扩张性质和泡沫性能[J]. 西安石油大学学报:自然科学版,2012,27(5):54-57. LIU Hongsheng, L Changsen, YANG Li, et al. Surface dilational property and foam properties of compounded system of AOS with CHSB[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2012, 27(5):54-57.
[29] 张春荣. 泡沫复合驱模拟体系界面扩张粘弹与泡沫性质研究[D]. 北京:中国科学院理化技术研究所,2007. ZHANG Chunrong. A study of interfacial dilational properties and foam properties of foam combination flooding model systems[D]. Beijing:Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2007.
[30] 曹绪龙,何秀娟,赵国庆,等. 表面活性剂疏水链长对高温下泡沫稳定性的影响[J]. 高等学校化学学报,2007,28(11):2106-2011. CAO Xulong, HE Xiujuan, ZHAO Guoqing, et al. Effect of hydrophobic chain length of surfactants on foam stability at high temperature[J]. Chemical Journal of Chinese Universities, 2007, 28(11):2106-2011.
[1] BAI Yanyan, CAO Yuexin, ZHANG Xianxi, ZHANG Luge, SUN Dezhi, YAN Hui, ZHANG Chong. The influence of SDS on C-343 solubilizing behavior in SB-16 micelle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 99-105.
[2] SHI Jing1,2, L Kai2, YUAN Shi-ling2*. Molecular dynamics simulation of alkyl benzene sulfonate at the oil-water interface [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 77-82.
[3] CHEN Hui. Experimental studies on  air-foam flooding in a heterogeneous reservoir at late high water cut stage [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 120-125.
Full text



No Suggested Reading articles found!