JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2018, Vol. 48 ›› Issue (3): 60-66.doi: 10.6040/j.issn.1672-3961.0.2017.421
Previous Articles Next Articles
LI Yuxin, PU Yuanyuan*, XU Dan, QIAN Wenhua, LIU Hejuan
CLC Number:
[1] DATTA R, JOSHI D, LI J, et al. Studying aesthetics in photographic images using a computational approach[C] //European Conference on Computer Vision. Graz, Austria: Springer-Verlag, 2006: 288-301. [2] LUO W, WANG X G, TANG X OU. Content-based photo quality assessment [J]. IEEE Transaction on Multimedia, 2013, 15(8): 1930-1943. [3] SHAO J, ZHOU Y. Photo quality assessment in different categories [J]. Journal of Computational Information Systems, 2013, 9(8): 3209-3217. [4] DHAR S, ORDONEZ V, BERG T L. High level describable attributes for predicting aesthetics and interestingness[C] // Computer Vision and Pattern Recognition. Colorado, USA: IEEE Computer Society, 2011:1657-1664. [5] OBRADOR P, SCHMIDT-HACKENBERG L, OLIVER N. The role of image composition in image aesthetics[C] //IEEE International Conference on Image Processing. Hong Kong, China: IEEE Xplore, 2010:3185-3188. [6] WANG C H, PU Y Y, XU D, et al. Evaluating aesthetics quality in scenery photo[C] //Proceeding of National Conference on Multimedia Technology. Beijing, China: Machinery Industry Press, 2015:141-149. [7] WANG C, PU Y, XU D. Evaluating aesthetics qualities in portrait images[J]. Journal of Software, 2015, 26(S2): 20-28. [8] LECUN Y, BOSER B, DENKER J, et al. Back propagation applied to handwritten zip code recognition[J]. Neural Computation, 2014, 1(4):541-551. [9] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1544. [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C] //International Conference on Neural Information Processing Systems. Nevada, USA:Curran Associates Inc, 2012:1097-1105. [11] GUO L, LI F, LIEW W C. Image Aesthetic Evaluation Using Parallel Deep Convolution Neural Network[C] //International Conference on Digital Image Computing: Techniques and Applications. Gold Coast, Australia: IEEE Computer Society, 2016:1-5. [12] LU X, LIN Z, JIN H, et al. Rapid: rating pictorial aesthetics using deep learning[C] //Proceedings of the ACM International Conference on Multimedia. Orlando, USA: ACM, 2014:457-466. [13] WANG L, OUYANG W, WANG X, et al. Visual tracking with fully convolutional networks[C] //IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Computer Society, 2015:3119-3127. [14] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] //IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE Computer Society, 2014:580-587. [15] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10 000 classes[C] //IEEE Conference on Computer Vision and Pattern Recognition. Hong Kong, China: IEEE, 2014:1891-1898. [16] KARAYEV S, TRENTACOSTE M, HAN H, et al. Recognizing image style[EB/OL].(2014-7-23)[2018-3-22]. https://arxiv.org/abs/1311.3715. [17] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: delving deep into convolutional nets[C] //Proceeding of British Machine Vision Conference. Nottingham, UK: BMVA Press, 2014. [18] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[EB/OL].(2014-6-20)[2018-3-22]. https://arxiv.org/abs/1408.5093 |
[1] | YU Li-ping1,2, TANG Huan-ling1,2. Transfer learning model based on classification consensus and its application in pedestrian detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 26-31. |
[2] | XU Shan-shan, LIU Ying-an*, XU Sheng. Wood defects recognition based on the convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 23-28. |
|