Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 129-141.doi: 10.6040/j.issn.1672-3961.0.2024.265

• Civil Engineering • Previous Articles    

Plastic hinge length study of prefabricated segmental assembled bridge piers

XIE Yupeng, XIONG Ergang*, LI Sifeng, LIU Fengwei, WANG Shang   

  1. XIE Yupeng, XIONG Ergang*, LI Sifeng, LIU Fengwei, WANG Shang(College of Architecture and Engineering, Chang'an University, Xi'an 710061, Shaanxi, China
  • Published:2025-12-22

Abstract: In order to investigate the plastic hinge performance of precast segmental piers with two different connection methods based on the "cast-in-place" principle, a total of 66 concrete piers with rectangular or square cross-sections at home and abroad were collected and assembled based on the experimental studies of four precast piers. The effects of pier height, section height in the loading direction, material properties, reinforcement ratio, and axial compression ratio on the plastic hinge length were analyzed and the existing plastic hinge length formulae were evaluated. The formula of plastic hinge length suitable for precast segmental assembled piers was proposed, and its feasibility was verified by analytical method. The results indicated that the plastic hinge length increases with the increase of the pier height, section height, yield strength, and diameter of longitudinal bars and reinforcement ratio, and decreases with the increase of the axial compression ratio; and the formula proposed in this paper was suitable for the calculation of the plastic hinge length of precast segmental assembled pier.

Key words: prefabricated segmental assembled piers, new connection, plastic hinge length, deformation capacity, pseudo-static test

CLC Number: 

  • TU375
[1] BISKINIS D, FARDIS M N. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars[J]. Structural Concrete, 2010, 11(2): 93-108.
[2] BISKINIS D, FARDIS M N. Effect of lap splices on flexural resistance and cyclic deformation capacity of RC members[J]. Beton-und Stahlbetonbau, 2007, 102(Suppl.1): 51-59.
[3] KOROGLU M A, ARSLAN M H, KOREZ M K. Use of regression analysis in determining the length of plastic hinge in reinforced concrete columns[J]. International Journal of Civil and Environmental Engineering, 2014, 8(4): 401-406.
[4] 陈子毅, 弓俊青, 郭春红. 桥梁墩柱的等效塑性铰长度分析研究[C] //全国建筑物检测鉴定与加固改造第十二届学术交流会论文集. 广州, 中国:[s.n.] , 2014: 332-336.
[5] 仇建磊, 张艳青, 贡金鑫. 钢筋混凝土柱等效塑性铰长度计算研究[J]. 大连理工大学学报, 2017, 57(6): 585-592. QIU Jianlei, ZHANG Yanqing, GONG Jinxin. Study of evaluation of equivalent plastic hinge length of reinforced concrete columns[J]. Journal of Dalian University of Technology, 2017, 57(6): 585-592.
[6] 邵光强, 刘开, 蒋丽忠, 等. 高速铁路桥墩等效塑性铰长度研究[J]. 铁道工程学报, 2017, 34(7): 53-59. SHAO Guangqiang, LIU Kai, JIANG Lizhong, et al. Study of plastic hinge length in high-speed railway bridge piers[J]. Journal of Railway Engineering Society, 2017, 34(7): 53-59.
[7] 周建, 李建中. 铁路圆端形空心墩位移能力与等效塑性铰长度分析[J]. 铁道科学与工程学报, 2019, 16(11): 2748-2758. ZHOU Jian, LI Jianzhong. Analysis of displacement capacity and equivalent plastic hinge length of hollow piers with rounded rectangular cross section in railways [J]. Journal of Railway Science and Engineering, 2019, 16(11): 2748-2758.
[8] BILLAH A H M M, SHAHRIA ALAM M. Plastic hinge length of shape memory alloy(SMA)reinforced concrete bridge pier[J]. Engineering Structures, 2016, 117: 321-331.
[9] CHAN Y C. A plastic hinge length model for evaluating force-displacement characteristics of reinforced concrete columns[D]. Hong Kong,China: The Hong Kong University of Science and Technology, 2018: 65-74.
[10] REN L, FANG B, WANG K, et al. Numerical investigation on plastic hinge length of ultra-high performance concrete column under cyclic load[J]. Journal of Earthquake Engineering, 2022, 26(3): 1281-1299.
[11] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model[J]. Journal of Bridge Engineering, 2019, 24(3): 04018124.
[12] YE Y X, WANG Z B, YANG Z H, et al. Seismic performance test research on a new type of replaceable energy-consuming joint column[J]. Soil Dynamics and Earthquake Engineering, 2023, 166: 107786.
[13] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge models[J]. Journal of Bridge Engineering, 2019, 24: 04018124.
[14] PARK R, PRIESTLEY M N, GILL W D. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, 1982, 108(4): 929-950.
[15] ALEMDAR Z F. Plastic hinging behavior of reinforced concrete bridge columns[D]. Lawrence,USA: University of Kansas, 2010: 9-46.
[16] TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Christchurch, New Zealand: University of Canterbury, 1990: 269-283.
[17] BAYRAK O, SHEIKH S A. High-strength concrete columns under simulated earthquake loading[J]. Structural Journal, 1997, 94(6): 708-722.
[18] BAYRAK O. Seismic performance of rectilinearly confined high strength concrete columns[D]. Toronto,Canada: University of Toronto, 1998: 126-149.
[19] BAE S. Seismic performance of full-scale reinforced concrete columns[D]. Austin, USA: The University of Texas at Austin, 2005.
[20] WATSON S, PARK R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1825-1849.
[21] SHEIKH S A, KHOURY S S. Confined concrete columns with stubs[J]. ACI Structural Journal, 1993, 90(4): 414-414.
[22] SHEIKH S A, SHAH D V, KHOURY S S. Confinement of high-strength concrete columns[J]. ACI Structural Journal, 1994, 91: 100-111.
[23] 房麟. 钢筋混凝土空心墩抗震性能试验研究[D]. 成都: 西南交通大学, 2016: 38-56. FANG Lin. Experimental study on the seismic performance of reinforced concrete hollow piers[D]. Chengdu: Southwest Jiaotong University, 2016: 38-56.
[24] ELWOOD K J, EBERHARD M O. Effective stiffness of reinforced concrete columns[J]. ACI Structural Journal, 2009, 106(4): 476-484.
[25] 中华人民共和国交通运输部.公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
[26] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John Wiley & Sons, 1992.
[27] MANDER J B. Seismic design of bridge piers[D]. Christchurch, New Zealand: The University of Can-terbury, 1983: 412-459.
[28] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading[J]. Structural Journal, 1987, 84(1): 61-76.
[29] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135-148.
[30] 孙治国, 王东升, 郭迅, 等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报, 2011, 24(5): 56-64. SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. Chinese Journal of Highways, 2011, 24(5): 56-64.
[1] Wenjie LIU,Xueying YANG,Bo ZHANG,Zhixin FAN,Chengxin LI,Huiming YANG,Jinglong LI. Shear capacity of beams with cracks and without web reinforcement [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 42-50.
[2] FAN Yujiang, YU Binshan, GE Jun, HUANG Huanhuan, LIAO Kai, DING Jiaxiong, XIONG Ergang. Friction and shear resistance mechanism of a new prefabricated shear wall [J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!