Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 129-141.doi: 10.6040/j.issn.1672-3961.0.2024.265
• Civil Engineering • Previous Articles
XIE Yupeng, XIONG Ergang*, LI Sifeng, LIU Fengwei, WANG Shang
CLC Number:
| [1] BISKINIS D, FARDIS M N. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars[J]. Structural Concrete, 2010, 11(2): 93-108. [2] BISKINIS D, FARDIS M N. Effect of lap splices on flexural resistance and cyclic deformation capacity of RC members[J]. Beton-und Stahlbetonbau, 2007, 102(Suppl.1): 51-59. [3] KOROGLU M A, ARSLAN M H, KOREZ M K. Use of regression analysis in determining the length of plastic hinge in reinforced concrete columns[J]. International Journal of Civil and Environmental Engineering, 2014, 8(4): 401-406. [4] 陈子毅, 弓俊青, 郭春红. 桥梁墩柱的等效塑性铰长度分析研究[C] //全国建筑物检测鉴定与加固改造第十二届学术交流会论文集. 广州, 中国:[s.n.] , 2014: 332-336. [5] 仇建磊, 张艳青, 贡金鑫. 钢筋混凝土柱等效塑性铰长度计算研究[J]. 大连理工大学学报, 2017, 57(6): 585-592. QIU Jianlei, ZHANG Yanqing, GONG Jinxin. Study of evaluation of equivalent plastic hinge length of reinforced concrete columns[J]. Journal of Dalian University of Technology, 2017, 57(6): 585-592. [6] 邵光强, 刘开, 蒋丽忠, 等. 高速铁路桥墩等效塑性铰长度研究[J]. 铁道工程学报, 2017, 34(7): 53-59. SHAO Guangqiang, LIU Kai, JIANG Lizhong, et al. Study of plastic hinge length in high-speed railway bridge piers[J]. Journal of Railway Engineering Society, 2017, 34(7): 53-59. [7] 周建, 李建中. 铁路圆端形空心墩位移能力与等效塑性铰长度分析[J]. 铁道科学与工程学报, 2019, 16(11): 2748-2758. ZHOU Jian, LI Jianzhong. Analysis of displacement capacity and equivalent plastic hinge length of hollow piers with rounded rectangular cross section in railways [J]. Journal of Railway Science and Engineering, 2019, 16(11): 2748-2758. [8] BILLAH A H M M, SHAHRIA ALAM M. Plastic hinge length of shape memory alloy(SMA)reinforced concrete bridge pier[J]. Engineering Structures, 2016, 117: 321-331. [9] CHAN Y C. A plastic hinge length model for evaluating force-displacement characteristics of reinforced concrete columns[D]. Hong Kong,China: The Hong Kong University of Science and Technology, 2018: 65-74. [10] REN L, FANG B, WANG K, et al. Numerical investigation on plastic hinge length of ultra-high performance concrete column under cyclic load[J]. Journal of Earthquake Engineering, 2022, 26(3): 1281-1299. [11] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model[J]. Journal of Bridge Engineering, 2019, 24(3): 04018124. [12] YE Y X, WANG Z B, YANG Z H, et al. Seismic performance test research on a new type of replaceable energy-consuming joint column[J]. Soil Dynamics and Earthquake Engineering, 2023, 166: 107786. [13] WANG Z, WANG J Q, TANG Y C, et al. Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge models[J]. Journal of Bridge Engineering, 2019, 24: 04018124. [14] PARK R, PRIESTLEY M N, GILL W D. Ductility of square-confined concrete columns[J]. Journal of the Structural Division, 1982, 108(4): 929-950. [15] ALEMDAR Z F. Plastic hinging behavior of reinforced concrete bridge columns[D]. Lawrence,USA: University of Kansas, 2010: 9-46. [16] TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Christchurch, New Zealand: University of Canterbury, 1990: 269-283. [17] BAYRAK O, SHEIKH S A. High-strength concrete columns under simulated earthquake loading[J]. Structural Journal, 1997, 94(6): 708-722. [18] BAYRAK O. Seismic performance of rectilinearly confined high strength concrete columns[D]. Toronto,Canada: University of Toronto, 1998: 126-149. [19] BAE S. Seismic performance of full-scale reinforced concrete columns[D]. Austin, USA: The University of Texas at Austin, 2005. [20] WATSON S, PARK R. Simulated seismic load tests on reinforced concrete columns[J]. Journal of Structural Engineering, 1994, 120(6): 1825-1849. [21] SHEIKH S A, KHOURY S S. Confined concrete columns with stubs[J]. ACI Structural Journal, 1993, 90(4): 414-414. [22] SHEIKH S A, SHAH D V, KHOURY S S. Confinement of high-strength concrete columns[J]. ACI Structural Journal, 1994, 91: 100-111. [23] 房麟. 钢筋混凝土空心墩抗震性能试验研究[D]. 成都: 西南交通大学, 2016: 38-56. FANG Lin. Experimental study on the seismic performance of reinforced concrete hollow piers[D]. Chengdu: Southwest Jiaotong University, 2016: 38-56. [24] ELWOOD K J, EBERHARD M O. Effective stiffness of reinforced concrete columns[J]. ACI Structural Journal, 2009, 106(4): 476-484. [25] 中华人民共和国交通运输部.公路桥梁抗震设计规范:JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020. [26] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings[M]. New York: John Wiley & Sons, 1992. [27] MANDER J B. Seismic design of bridge piers[D]. Christchurch, New Zealand: The University of Can-terbury, 1983: 412-459. [28] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading[J]. Structural Journal, 1987, 84(1): 61-76. [29] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135-148. [30] 孙治国, 王东升, 郭迅, 等. 钢筋混凝土墩柱等效塑性铰长度研究[J]. 中国公路学报, 2011, 24(5): 56-64. SUN Zhiguo, WANG Dongsheng, GUO Xun, et al. Research on equivalent plastic hinge length of reinforced concrete bridge column[J]. Chinese Journal of Highways, 2011, 24(5): 56-64. |
| [1] | Wenjie LIU,Xueying YANG,Bo ZHANG,Zhixin FAN,Chengxin LI,Huiming YANG,Jinglong LI. Shear capacity of beams with cracks and without web reinforcement [J]. Journal of Shandong University(Engineering Science), 2022, 52(3): 42-50. |
| [2] | FAN Yujiang, YU Binshan, GE Jun, HUANG Huanhuan, LIAO Kai, DING Jiaxiong, XIONG Ergang. Friction and shear resistance mechanism of a new prefabricated shear wall [J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 76-82. |
|
||