Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 100-107.doi: 10.6040/j.issn.1672-3961.0.2024.334

• 能动工程——热管理专题 • Previous Articles    

Design and experimental research of centrifugally-enhanced involute heat pipe for spacecraft

SONG Yunfei1, ZHANG Hongxing1, ZHOU Yupeng1, YANG Changpeng1, XIE Yongqi2   

  1. SONG Yunfei1, ZHANG Hongxing1, ZHOU Yupeng1, YANG Changpeng1, XIE Yongqi2(1. National Key Laboratory of Spacecraft Thermal Control(Beijing Institude of Spacecraft System Engineering), Beijing 100094, China;
    2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
  • Published:2025-12-22

Abstract: To address the thermal path optimization for high heat dissipation and high heat flux concentration devices on scanning-mode spacecraft rotating platforms, a centrifugally-enhanced involute heat pipe(CEIhp)was designed. By optimizing the heat pipe configuration, the impact of platform rapid rotation on the startup of the heat pipe was reduced, and the rotational acceleration was leveraged to enhance its maximum heat transfer capacity. A centrifugal test platform was established to validate both thermal transfer and startup performance of the CEIhp. Experimental results demonstrated that the CEIhp could successfully initiate operation across angular velocity of 0-2.512 rad·s-1. The heat transfer capacity of CEIhp increased from 170 W·m to 421 W·m as the angular velocity rose, with the startup power requirement escalating to 6.6 W. This achievement fulfilled the application requirements for efficient heat transfer on scanning-mode spacecraft rotating platforms and enabled full-range efficient thermal dissipation for compact rotating platforms.

Key words: scanning-mode spacecraft, angular velocity, centrifugally-enhanced, involute heat pipe, heat transfer capacity, startup performance

CLC Number: 

  • V444.3
[1] 曹喜滨, 金光, 王峰, 等. 一种卫星快速旋转超大幅宽摆扫成像方法: CN107152926A[P]. 2017-08-24.
[2] 吴凡. 新体制旋扫成像光学卫星动力学与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 8-10. WU Fan. Dynamics and control of rotating scan optical satellites[D]. Harbin: Harbin Institute of Technology, 2020: 8-10.
[3] 李诗润, 刘昕, 杨娟娟, 等. 基于星载合成孔径雷达的环扫成像模式设计[J]. 空间电子技术, 2022, 19(2): 106-110. LI Shirun, LIU Xin, YANG Juanjuan, et al. A circular scanning imaging-mode design based on the spaceborne synthetic aperture radar[J]. Space Electronic Technology, 2022, 19(2): 106-110.
[4] 李德富, 刘小旭, 邓婉, 等. 热管技术在航天器热控制中的应用[J]. 航天器环境工程, 2016, 33(6): 625-633. LI Defu, LIU Xiaoxu, DENG Wan, et al. Application of heat pipe technology in spacecraft thermal control[J]. Spacecraft Environment Engineering, 2016, 33(6): 625-633.
[5] ANAND A R. Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe[J]. International Journal of Thermal Sciences, 2019, 139: 269-281.
[6] BHATTA A, PATEL R N, JAIN S V, et al. Experi-mental investigations on novel orientation study on axially grooved heat pipe with two evaporators and one condenser with multiple branches[J]. Heat and Mass Transfer, 2024, 60(2): 377-393.
[7] SRIRAM SUDHAN A L, SOLOMON A B, SUNDER S. Heat transport limitations and performance enhancement of anodized grooved heat pipes charged with ammonia under gravity and anti-gravity condition[J]. Applied Thermal Engineering, 2022, 200: 117633.
[8] 位翠翠, 崔晓钰, 蒋珍华, 等. 160—220 K温区槽道热管传热特性[J]. 化学工程, 2023, 51(9): 49-54. WEI Cuicui,CUI Xiaoyu,JIANG Zhenhua,et al. Heat transfer characteristics of grooved heat pipe at 160-220 K[J]. Chemical Engineering(China), 2023, 51(9): 49-54.
[9] 张畅,谢荣建,孙琦,等. 液氮温区Ω形轴向槽道热管的启动特性与传热性能[J]. 化工进展,2019,38(6):2610-2617. ZHANG Chang, XIE Rongjian, SUN Qi, et al. Start-up and heat transfer performance of a nitrogen cryogenic axial Ω shape grooved heat pipe[J]. Chemical Industry and Engineering Progress, 2019, 38(6):2610-2617.
[10] 乔家广, 陶乐仁, 谢荣建, 等. 特殊型槽道热管启动和运行特性研究[J]. 低温与超导, 2019, 47(3): 84-88. QIAO Jiaguang, TAO Leren, XIE Rongjian, et al. Research on starting and operation characteristics of special grooved heat pipe[J]. Cryogenics & Supercon-ductivity, 2019, 47(3): 84-88.
[11] 周强, 王录, 刘畅, 等. 用于大功率航天器的3D打印钛水热管设计及试验研究[J]. 航天器工程, 2020, 29(4): 86-92. ZHOU Qiang, WANG Lu, LIU Chang, et al. Design and verification of 3D printing titanium-water heat pipe used in high-power spacecraft[J]. Spacecraft Engineering, 2020, 29(4): 86-92.
[12] 闵桂荣, 郭舜. 航天器热控制[M]. 2版. 北京: 科学出版社, 1998: 151-156. MIN Guirong, GUO Shun. Spacecraft thermal control[M]. 2nd ed. Beijing: Science Press, 1998: 151-156.
[13] ZHANG R P. Capillary driven thermal and hydrodynamic characteristics of axial swallow-tailed micro-grooved heat pipe[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(21): 2573-2587.
[14] YAO F, YU C, LI X, et al. Numerical study on the heat transfer characteristics of axially grooved heat pipe assisted by gravity[J]. Microgravity Science and Technology, 2021, 33(1): 9.
[15] VOIGT I, DROSSEL W G. Experimental investigation of heat pipe performance under translational acceleration[J]. Heat and Mass Transfer, 2022, 58(2): 209-219.
[16] 孟柯含. 铝氨轴向槽道热管传热特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2020: 8-10. MENG Kehan. Study on heat transfer characteristics of aluminum-ammonia axially grooved heat pipe[D]. Harbin: Harbin University of Science and Technology, 2020: 8-10.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!