Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 100-107.doi: 10.6040/j.issn.1672-3961.0.2024.334
• 能动工程——热管理专题 • Previous Articles
SONG Yunfei1, ZHANG Hongxing1, ZHOU Yupeng1, YANG Changpeng1, XIE Yongqi2
CLC Number:
| [1] 曹喜滨, 金光, 王峰, 等. 一种卫星快速旋转超大幅宽摆扫成像方法: CN107152926A[P]. 2017-08-24. [2] 吴凡. 新体制旋扫成像光学卫星动力学与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 8-10. WU Fan. Dynamics and control of rotating scan optical satellites[D]. Harbin: Harbin Institute of Technology, 2020: 8-10. [3] 李诗润, 刘昕, 杨娟娟, 等. 基于星载合成孔径雷达的环扫成像模式设计[J]. 空间电子技术, 2022, 19(2): 106-110. LI Shirun, LIU Xin, YANG Juanjuan, et al. A circular scanning imaging-mode design based on the spaceborne synthetic aperture radar[J]. Space Electronic Technology, 2022, 19(2): 106-110. [4] 李德富, 刘小旭, 邓婉, 等. 热管技术在航天器热控制中的应用[J]. 航天器环境工程, 2016, 33(6): 625-633. LI Defu, LIU Xiaoxu, DENG Wan, et al. Application of heat pipe technology in spacecraft thermal control[J]. Spacecraft Environment Engineering, 2016, 33(6): 625-633. [5] ANAND A R. Analytical and experimental investigations on heat transport capability of axially grooved aluminium-methane heat pipe[J]. International Journal of Thermal Sciences, 2019, 139: 269-281. [6] BHATTA A, PATEL R N, JAIN S V, et al. Experi-mental investigations on novel orientation study on axially grooved heat pipe with two evaporators and one condenser with multiple branches[J]. Heat and Mass Transfer, 2024, 60(2): 377-393. [7] SRIRAM SUDHAN A L, SOLOMON A B, SUNDER S. Heat transport limitations and performance enhancement of anodized grooved heat pipes charged with ammonia under gravity and anti-gravity condition[J]. Applied Thermal Engineering, 2022, 200: 117633. [8] 位翠翠, 崔晓钰, 蒋珍华, 等. 160—220 K温区槽道热管传热特性[J]. 化学工程, 2023, 51(9): 49-54. WEI Cuicui,CUI Xiaoyu,JIANG Zhenhua,et al. Heat transfer characteristics of grooved heat pipe at 160-220 K[J]. Chemical Engineering(China), 2023, 51(9): 49-54. [9] 张畅,谢荣建,孙琦,等. 液氮温区Ω形轴向槽道热管的启动特性与传热性能[J]. 化工进展,2019,38(6):2610-2617. ZHANG Chang, XIE Rongjian, SUN Qi, et al. Start-up and heat transfer performance of a nitrogen cryogenic axial Ω shape grooved heat pipe[J]. Chemical Industry and Engineering Progress, 2019, 38(6):2610-2617. [10] 乔家广, 陶乐仁, 谢荣建, 等. 特殊型槽道热管启动和运行特性研究[J]. 低温与超导, 2019, 47(3): 84-88. QIAO Jiaguang, TAO Leren, XIE Rongjian, et al. Research on starting and operation characteristics of special grooved heat pipe[J]. Cryogenics & Supercon-ductivity, 2019, 47(3): 84-88. [11] 周强, 王录, 刘畅, 等. 用于大功率航天器的3D打印钛水热管设计及试验研究[J]. 航天器工程, 2020, 29(4): 86-92. ZHOU Qiang, WANG Lu, LIU Chang, et al. Design and verification of 3D printing titanium-water heat pipe used in high-power spacecraft[J]. Spacecraft Engineering, 2020, 29(4): 86-92. [12] 闵桂荣, 郭舜. 航天器热控制[M]. 2版. 北京: 科学出版社, 1998: 151-156. MIN Guirong, GUO Shun. Spacecraft thermal control[M]. 2nd ed. Beijing: Science Press, 1998: 151-156. [13] ZHANG R P. Capillary driven thermal and hydrodynamic characteristics of axial swallow-tailed micro-grooved heat pipe[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(21): 2573-2587. [14] YAO F, YU C, LI X, et al. Numerical study on the heat transfer characteristics of axially grooved heat pipe assisted by gravity[J]. Microgravity Science and Technology, 2021, 33(1): 9. [15] VOIGT I, DROSSEL W G. Experimental investigation of heat pipe performance under translational acceleration[J]. Heat and Mass Transfer, 2022, 58(2): 209-219. [16] 孟柯含. 铝氨轴向槽道热管传热特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2020: 8-10. MENG Kehan. Study on heat transfer characteristics of aluminum-ammonia axially grooved heat pipe[D]. Harbin: Harbin University of Science and Technology, 2020: 8-10. |
| No related articles found! |
|
||