Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (6): 13-20.doi: 10.6040/j.issn.1672-3961.0.2024.172
• Machine Learning & Data Mining • Previous Articles
LI Kunbiao, YANG Xiaohui*, ZHANG Feng, XU Tao, GUO Qingbei
CLC Number:
| [1] World Health Organization. Road traffic injuries[EB/OL].(2023-12-13)[2024-07-17]. https://www.who.int/newsroom/factsheets/detail/road-traffic-injuries [2] NASR AZADANI M, BOUKERCHE A. Driving behavior analysis guidelines for intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6027-6045. [3] WANG J Y, CHAI W H, VENKATACHALAPATHY A, et al. A survey on driver behavior analysis from in-vehicle cameras[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 10186-10209. [4] NHTSA. Put the phone away or pay[EB/OL].(2024-04-01)[2024-07-17]. https://www.nhtsa.gov/press-releases/2022-traffic-deaths-2023-early-estimates [5] U. S. Center for Disease Control and Prevention. Distracted driving[EB/OL].(2024-05-16)[2024-07-17]. https://www.cdc.gov/distracted_driving/about/ [6] ZANGI N, SROUR-ZREIK R, RIDEL D, et al. Driver distraction and its effects on partially automated driving performance: a driving simulator study among young-experienced drivers[J]. Accident Analysis & Prevention, 2022, 166: 106565. [7] HANG P, LV C, XING Y, et al. Human-like decision making for autonomous driving: a noncooperative game theoretic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2076-2087. [8] JHA S, BUSSO C. Estimation of driver's gaze region from head position and orientation using probabilistic confidence regions[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 59-72. [9] ROY K. Unsupervised sparse, nonnegative, low rank dictionary learning for detection of driver cell phone usage[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18200-18209. [10] ZUO X, ZHANG C, CONG F Y, et al. Mobile phone use driver distraction detection based on MSaE of multi-modality physiological signals[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 17650-17665. [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158. [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [13] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C] // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 6154-6162. [14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 779-788. [15] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-08)[2024-07-17]. https://arxiv.org/abs/1804.02767 [16] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019:9626-9635. [17] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7):38-39. [18] ROMERO A, BALLAS N, KAHOU S E, et al. Fitnets: hints for thin deep nets[EB/OL].(2014-12-19)[2024-07-17]. https://arxiv.org/abs/1412.6550 [19] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL].(2016-12-12)[2024-07-17]. https://arxiv.org/abs/1612.03928 [20] CHEN G B, CHOI W G, YU X, et al. Learning efficient object detection models with knowledge distillation[C] //Proceedings of the Advances in neural information processing systems. Long Beach, USA: NIPS, 2017:742-751. [21] LI Q Q, JIN S Y, YAN J J. Mimicking very efficient network for object detection[C] //Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 7341-7349. [22] ZHENG Z H, YE R G, HOU Q B, et al. Localization distillation for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10070-10083. [23] YANG Z D, LI Z, JIANG X H, et al. Focal and global knowledge distillation for detectors[C] //Proceedings of 2022 the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 4633-4642. [24] STREIFFER C, RAGHAVENDRA R, BENSON T, et al. Darnet: a deep learning solution for distracted driving detection[C] //Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference Industrial Track. Las Vegas, USA: ACM, 2017: 22-28. [25] LE T H N,ZHENG Y T, ZHU C C, et al. Multiple scale faster-RCNN approach to driver's cell-phone usage and hands on steering wheel detection[C] //Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE, 2016: 46-53. [26] JAIN H, ZOPE H, JAIN H, et al. Mobile phone detection and alcohol detection with engine locking for the prevention of car accidents[C] //Proceedings of the 2023 International Conference on Digital Applications, Transformation & Economy. Miri, Malaysia: IEEE, 2023: 1-6. [27] ABOUELNAGA Y, ERAQI H M, MOUSTAFA M N. Real-time distracted driver posture classification[EB/OL].(2017-06-28)[2024-07-17]. https://arxiv.org/abs/1706.0948 [28] WAGNER B, TAFFNER F, KARACA S, et al. Vision based detection of driver cell phone usage and food consumption[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(5): 4257-4266. [29] JIANG L D, XIE W, ZHANG D, et al. Smart diagnosis: deep learning boosted driver inattention detection and abnormal driving prediction[J]. IEEE Internet of Things Journal, 2021, 9(6): 4076-4089. [30] CAI J F, BAI J J, ZHOU T Q, et al. Dangerous driving behavior detection based on multi-source information fusion[C] //Proceedings of the 2022 8th International Conference on Big Data and Information Analytics(BigDIA), Guiyang, China: IEEE, 2022: 366-370. [31] NARAYANA P, ATTAR N. Analyzing the impact of distractions on driver attention: insights from eye movement behaviors in a driving simulator[C] //Proceedings of the 2023 Seventh IEEE International Conference on Robotic Computing(IRC). Laguna Hills, USA: IEEE, 2023: 356-359. [32] LIU R, QI G Q, GUAN W, et al. Driver distraction state recognition based on minimum spanning tree features using EEG data[C] //Proceedings of the 2023 3rd International Conference on Digital Society and Intelligent Systems(DSInS). Chengdu, China: IEEE, 2023: 437-440. [33] BACHTIAR F A, ARWANI I, PRASETYO R A B, et al. Distraction detection in driving using pose extraction and machine learning techniques[C] //Processdings of the 2023 IEEE 7th International Conference on Information Technology, Information Systems and Electrical Engineering(ICITISEE). Purwokerto, Indonesia: IEEE, 2023: 279-284. [34] PUTRA N C B, YUNIARNO E M, RACHMADI R F. Driver visual distraction detection based on face mesh feature using deep learning[C] // 2023 International Seminar on Intelligent Technology and Its Applications(ISITIA). Surabaya, Indonesia: IEEE, 2023: 6-11. [35] CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C] //Processdings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Seoul: IEEE, 2019: 1971-1980. [36] LI X, WANG W H, WU L J, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[C] //Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: ACM, 2020: 21002-21012. [37] YANG Z, LIU S H, HU H, et al. RepPoints: point set representation for object detection[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9656-9665. [38] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2999-3007. |
| [1] | ZHOU Qunying, SUI Jiacheng, ZHANG Ji, WANG Hongyuan. Industrial product surface defect detection based on self supervised convolution and parameter free attention mechanism [J]. Journal of Shandong University(Engineering Science), 2025, 55(4): 40-47. |
| [2] | YANG Jucheng, LU Kaikui, WANG Yuan. Review of knowledge distillation based on generative adversarial networks [J]. Journal of Shandong University(Engineering Science), 2025, 55(4): 56-71. |
| [3] | YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21. |
|
||