Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (4): 18-28.doi: 10.6040/j.issn.1672-3961.0.2024.047
• Special Issue for Deep Learning with Vision • Previous Articles
ZHOU Zunfu1,2, ZHANG Qian3*, SHI Jiliang1,2, YUE Shiqin4
CLC Number:
| [1] BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 1-11. [2] EFROS A A, FREEMAN W T. Image quilting for texture synthesis and transfer[C] //Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA:ACM, 2001: 341-346. [3] YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 4470-4479. [4] YAN Z, LI X, LI M, et al. Shift-Net: image inpainting via deep feature rearrangement[C] //Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 3-19. [5] LIU H, JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 4170-4179. [6] LI J, HE F, ZHANG L, et al. Progressive reconstruction of visual structure for image inpainting[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 5961-5970. [7] WANG N, ZHANG Y, ZHANG L. Dynamic selection network for image inpainting[J]. IEEE Transactions on Image Processing, 2021, 30: 1784-1798. [8] ZENG Y, FU J, CHAO H,et al. Aggregated contextual transformations for high-resolution image inpainting[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7): 3266-3280. [9] HUI S, ZHOU S, DENG Y, et al. Auxiliary loss reweighting for image inpainting[EB/OL].(2022-04-22)[2024-04-20]. https://arxiv.org/abs/2111.07279 [10] MISRA D. Mish: a self regularized non-monotonic neural activation function[EB/OL].(2019-08-26)[2024-04-20]. https://arxiv.org/abs/1908.08681 [11] LIU Y, SHAO Z, TENG Y, et al. NAM: normali-zation-based attention module[EB/OL].(2021-11-24)[2024-04-20]. https://arxiv.org/abs/2111.12419 [12] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL].(2018-02-26)[2024-04-20]. https://arxiv.org/abs/1710.10196 [13] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[EB/OL].(2008-09-16)[2024-04-20]. https://inria.hal.science/inria-00321923v1/document [14] BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C] //Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM, 2000: 417-424. [15] TSCHUMPERLÉ D, DERICHE R. Vector-valued image regularization with PDEs: a common framework for different applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 506-517. [16] DARABI S, SHECHTMAN E, BARNES C, et al. Image melding: combining inconsistent images using patch-based synthesis[J]. ACM Transactions on Graphics, 2012, 31(4): 1-10. [17] BUYSSENS P, DAISY M, TSCHUMPERLÉ D, et al. Exemplar-based inpainting: technical review and new heuristics for better geometric reconstructions[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1809-1824. [18] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: Curran Associates, 2014: 2672-2680. [19] NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: generative image inpainting with adversarial edge learning[EB/OL].(2019-01-11)[2024-04-20]. https://arxiv.org/abs/1901.00212 [20] XIONG W, YU J, LIN Z,et al. Foreground-aware image inpainting[C] //Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 5833-5841. [21] REN Y, YU X, ZHANG R, et al. StructureFlow: image inpainting via structure-aware appearance flow[C] // Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision(ICCV). Seoul: IEEE, 2019: 181-190. [22] ZENG Y H, FU J L, CHAO H Y, et al. Learning pyramid-context encoder network for high-quality image inpainting[C] //Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 1486-1494. [23] YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C] //Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 5505-5514. [24] ZHENG C X, CHAM T J, CAI J F. Pluralistic image completion[C] //Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 1438-1447. [25] QIN J, BAI H, ZHAO Y.Multi-scale attention network for image inpainting[J]. Computer Vision and Image Understanding, 2021, 204: 103155. [26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [27] GUO X, YANG H, HUANG D. Image inpainting via conditional texture and structure dual generation[C] //Proceedings of the 18th IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 14114-14123. [28] POTLAPALLI V, ZAMIR S W, KHAN S, et al. PromptIR: prompting for all-in-one blind image restoration[C] //Proceedings of the 37th International Conference on Neural Information Processing Systems. New Orleans, USA: Curran Associates, 2023: 71275-71293. [29] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C] //Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234-241. [30] IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. [31] LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks[C] //Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 702-716. [32] LIU G, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C] //Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 89-105. [33] DENG Y, HUI S, MENG R, et al. Hourglass attention network for image inpainting[C] //Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 483-501. |
| [1] | Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7. |
| [2] | Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57. |
| [3] | Shiguang LIU,Hairong WANG,Jin LIU. Fast 4-points congruent sets for coarse registration of 3D point cloud [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 1-7. |
| [4] | Guoxin WANG,Fengdong CHEN,Guodong LIU. Feature extraction method of color pseudo-random coded structured light [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 55-60. |
| [5] | ZHAO Ye, HE Xiao, ZHOU Donghua. On least squares fault estimation with incorrect measurement noise statistics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 254-262. |
| [6] | JIN Peipei, SUN Fengrong, LIU Fanglei, YAO Guihua. Cardiac cycle estimation of echocardiography with speckle tracking [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 94-99. |
| [7] | ZOU Guofeng, FU Guixia, LI Zhenmei, LI Haitao, WANG Kejun. Face image quality evaluation method based on the fusion of two level evaluation indexes [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 6-13. |
| [8] | WANG Na, CHEN Guodong, CHEN Yi. A bleeding simulation algorithm for skin surface based on improved SPH method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 22-27. |
| [9] | XIE Zhi-hua. A novel blood perfusion construction model and its application in infrared face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 1-5. |
| [10] | LIN Zhe1, YAN Jing-wen2, YUAN Ye2. Multi-modality image fusion based on sparse representation and PCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 13-17. |
| [11] | LV Xing,SHI Zhong-ke . Design and implementation of a realtime motion detection method based on DirectShow [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 5-9 . |
| [12] | WANG Mei,WANG Guo-hong . New method the vehical license plate character segmentation based on concomitant and complementary color features [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 31-34 . |
| [13] | ZHANG Zhi-wen,SONG Shi-jun, . Circle locating method based on roundness [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 19-22 . |
| [14] | XUE Jian, ZHAO Lin, ZHANG Hao, YANG Lu, HAO Fanchang. Traffic sign detection algorithm of improving Faster R-CNN [J]. Journal of Shandong University(Engineering Science), 2024, 54(5): 34-41. |
|
||