Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (4): 35-41.doi: 10.6040/j.issn.1672-3961.0.2023.160
• Machine Learning & Data Mining • Previous Articles Next Articles
LIU Guojun, FAN Tianxiang, WANG Naizheng, ZHANG Zhengda, QI Guangzhi
CLC Number:
[1] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recom-mendation[C] //Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 639-648. [2] WAIKHOM L, PATGIRI R. Graph neural networks:methods, applications, and opportunities[EB/OL].(2021-08-24)[2023-07-01]. https://arxiv.org/abs/2108.10733. [3] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C] //Proceedings of the 33rd International Conference on Machine Learning. New York, USA: PMLR, 2016: 2014-2023. [4] YANG L, CHEUNG N M, LI J, et al. Deep clustering by gaussian mixture variational autoencoders with graph embedding[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 6440-6449. [5] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 1024-1034. [6] QU M, BENGIO Y, TANG J. GMNN:graph Markov neural networks[C] //Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR, 2019: 5241-5250. [7] WANG X, BO D, SHI C, et al. A survey on hetero-geneous graph embedding: methods, techniques, applications and sources[J]. IEEE Transactions on Big Data, 2023, 9(2): 415-436. [8] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance:a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. [9] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].(2018-02-04)[2023-07-01]. https://arxiv.org/abs/1710.10903. [10] YING C, CAI T, LUO S,et al. Do transformers really perform badly for graph representation?[EB/OL].(2021-11-24)[2023-07-01]. https://arxiv.org/abs/2106.05234v1. [11] WANG Z, YU D, LI Q, et al. SR-HGN: semantic-and relation-aware heterogeneous graph neural network[J]. Expert Systems with Applications, 2023, 224: 119982. [12] BOJCHEVSKI A, GÜNNEMANN S. Deep gaussian embedding of graphs:unsupervised inductive learning via ranking[EB/OL].(2018-02-27)[2023-07-01]. https://arxiv.org/abs/1707.03815v2. [13] REZENDE D, MOHAMED S. Variational inference with normalizing flows[C] //Proceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 1530-1538. [14] KOBYZEV I, PRINCE S J D, BRUBAKER M A. Normalizing flows:an introduction and review of current methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3964-3979. [15] HOUSEHOLDER A S. Unitary triangularization of a nonsymmetric matrix[J]. Journal of the ACM, 1958, 5(4): 339-342. [16] LIU G, LIU Y, GUO M, et al. Variational inference with Gaussian mixture model and householder flow[J]. Neural Networks, 2019, 109: 43-55. [17] 王梅. 几类特殊对称矩阵的分解[D]. 天津:天津工业大学, 2019. WANG Mei. Decomposition of some special symmetric matrices[D]. Tianjin: Tianjin University of Techn-ology, 2019. [18] SUN X, BISCHOF C. A basis-kernel representation of orthogonal matrices[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(4): 1184-1196. [19] ZHU D, CUI P, WANG D, et al. Deep variational network embedding in Wasserstein space[C] //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK: ACM, 2018: 2827-2836. [20] 刘泽华. Wasserstein空间上的积分及其在分布式鲁棒优化中的应用[D]. 南京:南京大学, 2020. LIU Zehua. Calculus on Wasserstein space and its application in distributed robust optimization[D]. Nanjing: Nanjing University, 2020. [21] ÇELIK T Ö, JAMNESHAN A, MONTÚFAR G, et al. Wasserstein distance to independence models[J]. Journal of Symbolic Computation, 2021, 104: 855-873. [22] MCCALLUM A K, NIGAM K, RENNIE J,et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163. [23] GILES C L, BOLLACKER K D, LAWRENCE S.CiteSeer: an automatic citation indexing system[C] //Proceedings of the Third ACM Conference on Digital Libraries. Pittsburgh, USA: ACM, 1998: 89-98. [24] PAN S, WU J, ZHU X, et al. Tri-party deep network representation[C] //Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA: IJCAI, 2016: 1895-1901. [25] SEN P, NAMATA G, BILGIC M,et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106. [26] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Francisco, USA: ACM, 2016: 855-864. [27] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C] //Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI, 2015: 2111-2117. [28] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. [29] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL].(2016-11-26)[2023-07-01]. https://arxiv.org/abs/1611.07308. [30] PEROZZI B, AL-RFOU R, SKIENA S.Deepwalk: online learning of social representations[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2014: 701-710. |
[1] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[2] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[3] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[4] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[5] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[6] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[7] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[8] | CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7. |
[9] | YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202. |
[10] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[11] | LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70. |
[12] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
[13] | WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61. |
[14] | WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14. |
[15] | CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22. |
|