Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (4): 35-41.doi: 10.6040/j.issn.1672-3961.0.2023.160

• Machine Learning & Data Mining • Previous Articles     Next Articles

Unsupervised graph embedding algorithm based on Gaussian distribution and Householder flow

LIU Guojun, FAN Tianxiang, WANG Naizheng, ZHANG Zhengda, QI Guangzhi   

  1. Faculty of Computing, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • Published:2024-08-20

CLC Number: 

  • TP181
[1] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recom-mendation[C] //Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 639-648.
[2] WAIKHOM L, PATGIRI R. Graph neural networks:methods, applications, and opportunities[EB/OL].(2021-08-24)[2023-07-01]. https://arxiv.org/abs/2108.10733.
[3] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C] //Proceedings of the 33rd International Conference on Machine Learning. New York, USA: PMLR, 2016: 2014-2023.
[4] YANG L, CHEUNG N M, LI J, et al. Deep clustering by gaussian mixture variational autoencoders with graph embedding[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 6440-6449.
[5] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 1024-1034.
[6] QU M, BENGIO Y, TANG J. GMNN:graph Markov neural networks[C] //Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR, 2019: 5241-5250.
[7] WANG X, BO D, SHI C, et al. A survey on hetero-geneous graph embedding: methods, techniques, applications and sources[J]. IEEE Transactions on Big Data, 2023, 9(2): 415-436.
[8] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance:a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94.
[9] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].(2018-02-04)[2023-07-01]. https://arxiv.org/abs/1710.10903.
[10] YING C, CAI T, LUO S,et al. Do transformers really perform badly for graph representation?[EB/OL].(2021-11-24)[2023-07-01]. https://arxiv.org/abs/2106.05234v1.
[11] WANG Z, YU D, LI Q, et al. SR-HGN: semantic-and relation-aware heterogeneous graph neural network[J]. Expert Systems with Applications, 2023, 224: 119982.
[12] BOJCHEVSKI A, GÜNNEMANN S. Deep gaussian embedding of graphs:unsupervised inductive learning via ranking[EB/OL].(2018-02-27)[2023-07-01]. https://arxiv.org/abs/1707.03815v2.
[13] REZENDE D, MOHAMED S. Variational inference with normalizing flows[C] //Proceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 1530-1538.
[14] KOBYZEV I, PRINCE S J D, BRUBAKER M A. Normalizing flows:an introduction and review of current methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3964-3979.
[15] HOUSEHOLDER A S. Unitary triangularization of a nonsymmetric matrix[J]. Journal of the ACM, 1958, 5(4): 339-342.
[16] LIU G, LIU Y, GUO M, et al. Variational inference with Gaussian mixture model and householder flow[J]. Neural Networks, 2019, 109: 43-55.
[17] 王梅. 几类特殊对称矩阵的分解[D]. 天津:天津工业大学, 2019. WANG Mei. Decomposition of some special symmetric matrices[D]. Tianjin: Tianjin University of Techn-ology, 2019.
[18] SUN X, BISCHOF C. A basis-kernel representation of orthogonal matrices[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(4): 1184-1196.
[19] ZHU D, CUI P, WANG D, et al. Deep variational network embedding in Wasserstein space[C] //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK: ACM, 2018: 2827-2836.
[20] 刘泽华. Wasserstein空间上的积分及其在分布式鲁棒优化中的应用[D]. 南京:南京大学, 2020. LIU Zehua. Calculus on Wasserstein space and its application in distributed robust optimization[D]. Nanjing: Nanjing University, 2020.
[21] ÇELIK T Ö, JAMNESHAN A, MONTÚFAR G, et al. Wasserstein distance to independence models[J]. Journal of Symbolic Computation, 2021, 104: 855-873.
[22] MCCALLUM A K, NIGAM K, RENNIE J,et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163.
[23] GILES C L, BOLLACKER K D, LAWRENCE S.CiteSeer: an automatic citation indexing system[C] //Proceedings of the Third ACM Conference on Digital Libraries. Pittsburgh, USA: ACM, 1998: 89-98.
[24] PAN S, WU J, ZHU X, et al. Tri-party deep network representation[C] //Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA: IJCAI, 2016: 1895-1901.
[25] SEN P, NAMATA G, BILGIC M,et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106.
[26] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Francisco, USA: ACM, 2016: 855-864.
[27] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C] //Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI, 2015: 2111-2117.
[28] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874.
[29] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL].(2016-11-26)[2023-07-01]. https://arxiv.org/abs/1611.07308.
[30] PEROZZI B, AL-RFOU R, SKIENA S.Deepwalk: online learning of social representations[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2014: 701-710.
[1] Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7.
[2] Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65.
[3] Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117.
[4] Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14.
[5] Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81.
[6] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[7] WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59.
[8] CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7.
[9] YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202.
[10] LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42.
[11] LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70.
[12] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[13] WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61.
[14] WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14.
[15] CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xin-guo1, XU Chong-fang1*, WANG Jin-shuang1, YAN Ji-cong1, HAN Ting-wu1,2. The design method and application of the non-inductive Chua′s circuit[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(6): 134 -138 .
[2] CHEN Wen-qiang1, LIN Chen1,2, CHEN Ke3, CHEN Jin-xiu1, ZOU Quan1,2*. Distributed affinity propagation clustering algorithm based on GraphLab[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 13 -18 .
[3] ZHOU Hai-long, SHEN Xiang-dong, XUE Hui-jun. Experiment research on unconfined compressive strength of cement soil under small age[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 75 -79 .
[4] ZHAO Jian-yu,JIA Lei,ZHU Wen-xing,YANG Li-cai . Design of fuzzy control for traffic signals of a urban arterial intersection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 46 -50 .
[5] XIA Hui1, WANG Hua1, CHEN Xi2. A kind of ant colony parameter adaptive optimization algorithm  based on particle swarm optimization thought[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 26 -30 .
[6] HUANG Chuan-zhen1,2, ZHUANG Xin-qiang1,2, ZOU Bin1,2, LIU Zi-ye1,2. A study on high speed cutting database of die steel for automobile covering panels[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(5): 9 -12 .
[7] LI Cai-hong,LI Yi-bin,FAN Chen . Dynamic obstacle avoidance Algorithm for the mobile robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 60 -64 .
[8] WEI Wei, ZHANG Yanning. Pose estimation based on semi-supervised latent Dirichlet allocation[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 17 -22 .
[9] MENG Xiang-bin1, YAO Kai2*, WU Qing-dong3, LIU Ji-shan3, DOU Zhi-gang2. Test study on soil dynamic stress diffusion of a waste iron slag embankment during dynamic consolidation[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 87 -92 .
[10] Chen Dongyan. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 41 -49 .