Journal of Shandong University(Engineering Science) ›› 2024, Vol. 54 ›› Issue (2): 114-125.doi: 10.6040/j.issn.1672-3961.0.2023.305
• Civil Engineering • Previous Articles Next Articles
JIANG Mingjing1,2,3,4, WANG Siyuan4, JIANG Pengming1, HUA Yixiong5, SHI Anning4, YANG Yuequn1, XUE Qiaobin1, DAI Wanting5, QIU Song5
CLC Number:
[1] 吴伟仁,于登云. 深空探测发展与未来关键技术[J]. 深空探测学报(中英文),2014,1(1): 5-17. WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17. [2] 张颖一,张伟,王功. 太空增材制造的技术需求和应用模式探索[J].中国材料进展, 2017,36: 503-511. ZHANG Yingyi, ZHANG Wei, WANG Gong. Discussion on the technical demands and application modes of additive manufacturing in space[J]. Materials China, 2017, 36: 503-511. [3] 田小勇,李尘,卢秉恒. 空间3D打印技术现状与前景[J].载人航天, 2016, 4: 471-476. TIAN Xiaoyong, LI Chen, LU Bingheng. Status and prospect of 3D printing technology in space[J]. Manned Spaceflight, 2016, 4: 471-476. [4] 梁静静,杨彦红,金涛,等. 金属材料空间3D打印技术研究现状[J]. 载人航天, 2017, 23: 663-669. LIANG Jingjing, YANG Yanhong, JIN Tao, et al. Research status of 3D printing technology for metals in space[J]. Manned Spaceflight, 2017, 23: 663-669. [5] 王功,刘亦飞,程天锦,等. 空间增材制造技术的应用[J].空间科学学报, 2016, 36: 571-576. WANG Gong, LIU Yifei, CHENG Tianjin, et al. Application of additive manufacturing technology for space[J]. Chinese Journal of Space Science, 2016, 36: 571-576. [6] 黄秋实,李良琦,高彬彬. 国外金属零部件增材制造技术发展概述[J].国防制造技术, 2012, 10: 26-29. HUANG Qiushi, LI Liangqi, GAO Binbin. Overview of the development of additive manufacturing technology for foreign metal parts[J]. Defense Manufacturing Tech-nology, 2012, 10: 26-29. [7] 孙红俊,蒋宇平. NASA在国际空间站试验零重力环境下的3D打印技术[J].军民两用技术与产品, 2013,11: 58-60. SUN Hongjun, JIANG Yuping. NASA 3D printing technology in the zero gravity environment of the International Space Station experiment[J]. Dual Use Technologies & Products, 2013, 11: 58-60. [8] YE Peijian, XIAO Fugen. Issues about lunar environment in lunar exploration project[J]. Spacecraft Environment Engineering, 2006, 23(1): 1-11. [9] MOROTA T, HARUYAMA J, HONDA C, et al. Mare volcanism in the lunar farside moscoviense region: implication for lateral variation in magma production of the moon[J]. Geophysical Research Letters, 2009, 36(21): 1-5. [10] JOLLY S D, HAPPEL J, STURE S. Design and construction of shielded lunar outpost[J]. Journal of Aerospace Engineering, 1994, 7(4): 417-434. [11] KONDYURINA I, KONDYURIN A, LAUKE B, et al. Polymerisation of composite materials in space environment for development of a moon base[J]. Advances in Space Research, 2006, 37(1): 109-115. [12] 邓佳音,程维明,刘樯漪,等.月表地貌起伏形态分异特征及分级标准研究[J].地理学报,2022,77(7): 1794-1807. DENG Jiayin, CHENG Weiming, LIU Qiangyi, et al. Morphological differentiation characteristics and classification criteria of lunar surface relief amplitude[J]. Acta Geographica Sinica, 2022, 77(7): 1794-1807. [13] ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by Chang'E-5 mission[J]. Science China Physics, Mechanics & Astronomy, 2022, 65: 1-8. [14] GRANT H, HEIKEN D, BEVAN M. Lunar sourcebook: a user's guide to the moon[M]. London: the Press Syndicate of the University of Cambridge, 1991. [15] FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 45-46. [16] KEIHM S J, PETERS K, LANGSETH M G, et al. Apollo 15 measurement of lunar surface brightness temperatures thermal conductivity of the upper 1% meters of regolith [J]. Earth and Planetary Science Letters, 1973, 19(3): 337-351. [17] HEMINGWAY B S, ROBIE R A, WILSON W H. Specific heats of lunar soils, basalt, and breccias from the Apollo 14, 15, and 16 landing sites, between 90 and 350 K [C] // Proceedings of the Fourth Lunar Science Conference. Houston, USA: Geochimica et Cosmochimica Acta, 1973: 2481-2487. [18] LOGAN L M, HUNT G R, BALSAMO S R, et al. Midinfrared emission spectra of Apollo 14 and 15 soils and remote compositional mapping of the moon[C] // Proceedings of the Third Lunar Science Conference. Houston, USA: Geochimica et Cosmochimica Acta. 1972: 3069-3076. [19] FELDMAN W C, MAURICE S, BINDER A B, et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles[J]. Science, 1998, 281(5382): 1496-1500. [20] SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016-2029. [21] STARUKHINA L V, SHKURATOV Y G. The lunar poles: water ice or chemically trapped hydrogen[J]. Icarus, 2000, 147(2): 585-587. [22] LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8907-8912. [23] RODIONOVA Z F, ZHARKOVA A Y, GRISHAKINA E A, et al. Topographic features of the lunar maria and basins[J]. Solar System Research, 2021, 55: 183-199. [24] HEAD III J W. Lunar volcanism in space and time[J]. Reviews of Geophysics, 1976, 14(2): 265-300. [25] 欧阳自远. 国际月球科研站[R].北京: 格致论道讲坛,2021. [26] 凌宗成,刘建忠,张江,等. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图: 以月球雨海-冷海地区(LQ-4)为例[J].地学前缘,2014,21(6): 107-120. LING Zongcheng, LIU Jianzhong, ZHANG Jiang, et al. The lunar rock types as determined by Chang'E-1 IIM data: a case study of Mare Imbrium-Mare Frigoris Region(LQ-4)[J]. Earth Science Frontiers, 2014, 21(6): 107-120. [27] 霍倩,刘姝瑞,谭艳君,等. 连续玄武岩纤维改性方法的研究进展[J].纺织科学与工程学报, 2021,38(1): 73-78. HUO Qian, LIU Shurui, TAN Yanjun, et al. Research progress on modification methods of continuous basalt fiber[J]. Journal of Textile Science and Engineering, 2021, 38(1): 73-78. [28] 蒋明镜,张鑫蕊,司马军,等. 壤基材料加筋月壤技术在月球基地建设中的应用[J]. 苏州科技大学学报(自然科学版), 2023, 40(3): 11-20. JIANG Mingjing, ZHANG Xinrui, SIMA Jun, et al. Future application of lunar-textile composite /reinforced regolith to the construction of lunar bases[J]. Journal of Suzhou University of Science and Technology(Natural Science Edition), 2023, 40(3): 11-20. [29] 肖龙,黄俊,赵佳伟,等.月面熔岩管洞穴探测的意义与初步设想[J].中国科学:物理学 力学 天文学,2018,48(11):87-100. XIAO Long, HUANG Jun, ZHAO Jiawei, et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2018, 48(11):87-100. [30] WAGNER R V, ROBINSON M S. Distribution, formation mechanisms, and significance of lunar pits[J]. Lcarus, 2014, 237: 52-60. [31] BENAROYA H. Lunar habitats: a brief overview of issues and concepts[J]. Reach, 2018, 7: 14-33. [32] CHAPPAZ L, SOOD R, MELOSH H, et al. Buried empty lava tube detection with GRAIL data[C] //Astro Dynamics Specialist Conference. San Diego, USA, AIAA Press, 2014: 4-7. [33] 梅洪元,包为民,于登云,等. 关于未来月球基地建筑方案的构想[J]. 深空探测学报(中英文), 2022, 9(6): 553-559. MEI Hongyuan, BAO Weimin, YU Dengyun, et al. Research on building plans design for future China lunar base[J]. Journal of Deep Space Exploration, 2022, 9(6): 553-559. [34] 朱恩涌,果琳丽,陈冲. 有人月球基地构建方案设想[J]. 航天返回与遥感, 2020, 34(5): 1-6. ZHU Enyong, GUO Linli, CHEN Chong. Research on manned lunar base construction scheme[J]. Spacecraft Recovery & Remote Sensing, 2020, 34(5): 1-6. [35] 李志杰,果琳丽,梁鲁,等. 有人月球基地构型及构建过程的设想[J]. 航天器工程, 2015, 24(5): 23-30. LI Zhijie, GUO Linli, LIANG Lu, et al. Configuration and construction process of manned lunar base[J]. Spacecraft Engineering, 2015, 24(5): 23-30. [36] GRANDL W. Lunar base 2015 stage 1 preliminary design study [J]. Acta Astronautica, 2007, 60(4/5/6/7): 554-560. [37] BENAROYA H, BERNOLD L. Engineering of lunar bases[J]. Acta Astronautica, 2008, 62(4/5): 277-299. [38] ZHOU C, CHEN R, XU J, et al. In-situ construction method for lunar habitation: Chinese Super Mason[J].Automation in Construction, 2019, 104: 66-79. [39] 宋靖华,张杨姝禾,袁焕鑫. 利用熔岩管道建设月球基地的规划设想[J]. 城市建筑, 2019, 16(7): 44-51. SONG Jinghua, ZHANG-YANG Shuhe, YUAN Huanxin. A tentative plan of lunar base under lava tubes[J]. Urbanism and Architecture, 2019, 16(7): 44-51. [40] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J].深空探测学报(中英文),2018,5(4): 374-381. YUAN Yong, ZHAO Chen, HU Zhenyu. Prospect of lunar base construction scheme[J]. Journal of Deep Space Exploration, 2018, 5(4): 374-381. [41] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. [42] 冯鹏, 包查润, 张道博, 等. 基于月面原位资源的月球基地建造技术[J]. 工业建筑, 2021, 51(1): 169. FENG Peng, BAO Charun, ZHANG Daobo, et al. Construction technology for lunar bases using lunar in-situ resources[J]. Industrial Construction, 2021, 51(1): 169. [43] ULUBEYLI S. Lunar shelter construction issues: the state-of-the-art towards 3D printing technologies[J]. Acta Astronautica, 2022, 195: 318-343. [44] 欧阳自远. 我国月球探测的总体科学目标与发展战略[J].地球科学进展, 2004, 19(3): 351-358. OUYANG Ziyuan. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351-358. [45] KHOSHNEVIS B, BODIFORD M P, BURKS K H, et al. Lunar contour crafting a novel technique for ISRU-based habitat development[C] //43rd AIAA Aerospace Sciences Meeting and Exhibit-Meeting Papers. Nevada, USA: AIAA Press, 2005: 7397-7409. [46] SMITHERS G A, NEHLS M K, HOVATER M A, et al. A one piece lunar regolith bag garage prototype[R]. Huntsville, USA: Marshall Space Flight Center, 2007. [47] AKISHEVA Y, GOURINAT Y. Utilisation of moon regolith for radiation protection and thermal insulation in permanent lunar habitats[J]. Applied Sciences, 2021, 11(9): 3853. [48] NAITO M, HASEBE N, SHIKISHIMA M, et al. Radiation dose and its protection in the moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube[J]. Journal of Radiological Protection, 2020, 40(4): 947. [49] 谢和平, 张国庆, 李存宝. 月球恒温层地下空间利用探索构想[J]. 工程科学与技术, 2020, 52(1): 1-8. XIE Heping, ZHANG Guoqing, LI Cunbao. Scheme of underground space utilization of lunar thermostatic layer[J]. Advanced Engineering Sciences, 2020, 52(1): 1-8. [50] ALLENDER E J, ORGEL C, ALMEIDA N V, et al. Traverses for the ISECG-GER design reference mission for humans on the lunar surface[J]. Advances in Space Research, 2019, 63(1): 692-727. [51] UY SALOMA E E S, BOONYATEE T. Image processing for geotechnical laboratory measurements[J]. Geomate Journal, 2016, 10(22): 1964-1970. [52] DAI Y Y, ZHANG K, MAHARJAN S, et al. Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12175-12186. [53] ONSEL E, CHANG O, MYSIOREK J, et al. Applications of mixed and virtual reality techniques in site characterization[C] //26th Vancouver Geotechnical Society Symp. Vancouver, Canada: AGU Press, 2019: 1-9. [54] COOMBS C R, HAWKE B R. A search for intact lava tubes on the moon: possible lunar base habitats[C] // The Second Conference on Lunar Bases and Space Activities of the 21st Century. Houston, USA: NASA Press, 1992(1): 219-229. [55] HARUYAMA J, SAWAI S, MIZUNO T, et al. Exploration of lunar holes, possible skylights of underlying lava tubes, by smart lander for investigating moon(slim)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): 7-10. [56] 龚自正, 李明, 陈川, 等. 小行星监测预警、安全防御和资源利用的前沿科学问题及关键技术[J]. 科学通报, 2020, 65(5): 346-372. GONG Zizheng, LI Ming, CHEN Chuan, et al. The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization[J]. Chinese Science Bulletin, 2020, 65(5): 346-372. [57] MAZZANTI P. Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes[J]. Geotechnical News, 2011, 29(2): 25. [58] 江月新, 黄云龙, 余建军. 基于 WiFi 通信的矿井监测无线传感器网络研究[J]. 煤炭技术, 2017, 36(6): 278-280. JIANG Yuexin, HUANG Yunlong, YU Jianjun. Research on mine monitoring wireless sensor network based on WiFi communication[J]. Coal Technology, 2017, 36(6): 278-280. [59] 李真, 闫广亮, 宋建村, 等. 思山岭铁矿超深超大规模开采工艺与思考[J].矿业研究与开发,2023,43(8): 1-6. LI Zhen, YAN Guangliang, SONG Jiancun, et al. Study and consideration on mining method of ultra deep and ultra large-scale in sishanling iron mine[J]. Mining Research and Development, 2023, 43(8): 1-6. [60] 陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. |
No related articles found! |
|