Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (6): 56-62.doi: 10.6040/j.issn.1672-3961.0.2023.142

• Machine Learning & Data Mining • Previous Articles    

Finger vein image quality evaluation method based on attention feature fusion network

CHI Yunhao, YANG Lu*, GUO Jie, HAO Fanchang, NIE Xiushan   

  1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Published:2023-12-19

CLC Number: 

  • TP311
[1] WU Jianda, YE Siouhuan. Driver identification using finger-vein patterns with radon transform and neural network[J]. Expert Systems with Applications, 2009, 36(3):5793-5799.
[2] QIN Huafeng, HU Rongshan, EL-YACOUBI Mounim A, et al. Local attention transformer-based full-view finger-vein identification[J]. IEEE Transactions on Circuits and Systems for Video Technology,2022, 33(6):2767-2782.
[3] HUANG Junduan, LUO Weijian, YANG Weili, et al. FVT: finger vein transformer for authentication[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-13.
[4] HUANG Junduan, ZHENG An, SHAKEEL M Saad, et al. FVFSNet: frequency-spatial coupling network for finger vein authentication[J]. IEEE Transactions on Information Forensics and Security, 2023, 18:1322-1334.
[5] ZHANG Zejun, ZHONG Fei, KANG Wenxiong. Study on reflection-based imaging finger vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2021, 17:2298-2310.
[6] YANG Lu, LIU Xing, YANG Gongping, et al. Small-area finger vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2023, 18:1914-1925.
[7] SHAHEED Kashif, MAO Aihua, QURESHI Imran, et al. Recent advancements in finger vein recognition technology: methodology, challenges and opportunities[J]. Information Fusion, 2022, 79:84-109.
[8] KAUBA Christof, PICIUCCO Emanuela, MAIORANA Emanuele, et al. Towards practical cancelable biometrics for finger vein recognition[J]. Information Sciences, 2022, 585:395-417.
[9] 王科俊, 刘靖宇, 马慧, 等. 手指静脉图像质量评价[J]. 智能系统学报, 2011, 6(4):324-327. WANG Kejun, LIU Jingyu, MA Hui, et al. A finger vein image quality assessment method[J]. CAAI Transactions on Intelligent Systems, 2011, 6(4):324-327.
[10] MA H, WANG K, FAN L, et al. A finger vein image quality assessment method using object and human visual system index[C] // International Conference on Intelligent Science and Intelligent Data Engineering. Nanjing, China: Springer, 2013:498-506.
[11] YANG Lu, YANG Gongping, YIN Yilong, et al. Finger vein image quality evaluation using support vector machines[J]. Optical Engineering, 2013, 52(2):1-10.
[12] ZHOU Lizhen, YANG Gongping, YANG Lu, et al. Finger vein image quality evaluation based on support vector regression[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8(8):211-222.
[13] SHAHEED K, YANG L, YANG G, et al. Novel image quality assessment and enhancement techniques for finger vein recognition[C] //International Conference on Security, Pattern Analysis, and Cybernetics. Jinan, China: IEEE, 2018:223-231.
[14] KASHIF Shaheed, IMRAN Qureshi. A hybrid proposed image quality assessment and enhancement framework for finger vein recognition[J/OL]. Multimedia Tools and Applications. [2022-02-25]. https://doi.org/10.1007/s11042-021-11877-x.
[15] QIN Huafeng, EL-YACOUBI Mounim A. Deep representation for finger-vein image quality assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(8):1677-1693.
[16] QIN H, El-YACOUBI M A. Finger-vein quality assessment by representation learning from binary images[C] //International Conference on Neural Information Processing. Istanbul, Turkey: Springer, 2015:421-431.
[17] WANG Y, FANG P. A finger-vein image quality assessment algorithm combined with improved SMOTE and convolutional neural network[C] //International Conference on Software Engineering and Service Science. Beijing, China: IEEE, 2020:1-4.
[18] REN Hengyi, SUN Lijuan, GUO Jian, et al. A high compatibility finger vein image quality assessment system based on deep learning[J]. Expert Systems with Applications, 2022, 196:1-12.
[19] QIN Huafeng, EL-YACOUBI Mounim A. Finger-vein quality assessment based on deep features from grayscale and binary images[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(11):1-19.
[20] 曾军英, 谌瑶, 秦传波, 等. 级联优化CNN的手指静脉图像质量评估[J].中国图象图形学报, 2019, 24(6):902-913. ZENG Junying, CHEN Yao, QIN Chuanbo, et al. Finger vein image quality assessment based on cascaded fine-tuning convolutional neural network[J].Journal of Image and Graphics, 2019, 24(6):902-913.
[21] QIN Huafeng, CHEN Ziran, HE Xiping. Finger-vein image quality evaluation based on the representation of grayscale and binary image[J]. Multimedia Tools and Applications, 2018, 77:2505-2527.
[22] DAT Tien Nguyen, YOUNG Ho Park, KWANG Yong Shin, et al. New finger-vein recognition method based on image quality assessment[J]. KSII Transactions on Internet and Information Systems, 2013, 7(2):347-365.
[23] HUANG Z, KANG W, WU Q, et al. A finger vein identification system based on image quality assessment[C] // Chinese Conference on Biometric Recognition, Chengdu, China: Springer, 2016:244-254.
[24] KUMAR Ajay, ZHOU Yingbo. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2011, 21(4):2228-2244.
[25] DAI Y, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C] // IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA: IEEE, 2021:3560-3569.
[26] HOWARD Andrew G, ZHU Menglong, CHEN Bo, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J/OL]. ArXiv. [2017-05-17]. https://doi.org/10.48550/arXiv.1704.04861.
[27] YIN Y, LIU L, SUN X. SDUMLA-HMT: a multimodal biometric database[C] // Chinese Conference on Biometric Recognition. Guangzhou, China: Springer, 2011:260-268.
[1] HOU Yanchen, ZHAO Jindong. SPK-means: a clustering algorithm for arbitrary shapes [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 87-92.
[2] CHU Jiajing, PAN Qingxian, PAN Ya'nan, LIU Qingju. Crowdsourcing quality control algorithm based on reputation model [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 93-101.
[3] LIU Bin, WANG Lei , WANG Chong, CAI Xiangxiang. An incremental method for updating approximations of consistent blocks while the universe evolves over time [J]. Journal of Shandong University(Engineering Science), 2023, 53(2): 109-117.
[4] Hao XIAO,Zhuhua LIAO,Yizhi LIU,Silin LIU,Jianxun LIU. Unmanned vehicle path planning based on deep Q learning in real environment [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 100-107.
[5] Zhuoyu XIAO,Pei HE,Guo CHEN,Yunbiao XU,Jie GUO. Design pattern classification mining with feature metrics constraints [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 48-58.
[6] Wenkai ZHANG,Ke YU,Xiaofei WU. Entity recommendation based on normalized similarity measure of meta graph in heterogeneous information network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 66-75.
[7] Chao FENG,Kunpeng XU,Lifei CHEN. LDA-based topic feature representation method for symbolic sequences [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 60-65.
[8] Delei CHEN, Cheng WANG, Jianwei CHEN, Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27.
[9] Qijie ZOU,Haoyu LI,Rubo ZHANG,Tengda PEI,Yan LIU. Survey of human-robot interaction control for autonomous driving [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 23-33.
[10] Zhongwei ZHANG,Hongyan MEI,Jun ZHOU,Huiping JIA. A rule extraction method based on multi-objective co-evolutionarygenetic algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 122-130.
[11] Xiaoyan GONGYE,Peiguang LIN,Weilong REN. Genetic algorithm based on Grefenstette coding and 2-opt optimized [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 19-26.
[12] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22-28.
[13] SHEN Ji, MA Zhiqiang, LI Tuya, ZHANG Li. A word extend LDA model for short text sentiment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 120-126.
[14] WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134-139.
[15] DU Xixi, LIU Huafeng, JING Liping. An additive co-clustering for recommendation of integrating social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!