Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (3): 1-13.doi: 10.6040/j.issn.1672-3961.0.2022.354

• Special Topic on Stability Analysis and Reinforcement of Geotechnical Engineering •     Next Articles

Deformation failure and damage evolution of urban metro tunnels under active faults

Wenbin XIAO1(),Yinbiao XIE2,*(),Yang ZHENG1,Ke WU1,Rong CHEN3,Qiulei LI1,Ruizhe CHENG1   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Linyi Architectural Design and Research Institute Co., Ltd., Linyi 276000, Shandong, China
    3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
  • Received:2022-10-24 Online:2023-06-20 Published:2023-07-07
  • Contact: Yinbiao XIE E-mail:202135057@mail.sdu.edu.cn;3174796@qq.com

Abstract:

Based on a tunnel project across a fault, a refined three-dimensional numerical model of fault tunnel surrounding rock was established in this study. The grouting pressure, jacking force, grouting hardening and nonlinear behavior of materials in actual shield construction were considered in the models. Through a series of numerical models, the deformation mechanism, mechanical properties and damage evolution of shield tunnels crossing fault fracture zones with different widths, dip angles and included angle were analyzed. In numerical simulation, the control variable method was used to change the width, dip angle and included angle of the fault respectively to study the influence of a single variable. The results showed that the deformation and damage area of tunnel vault were positively correlated with the increase of fault width. With the increase of the fault width, the arch extrusion became more obvious. However, when the fault width increased to a certain limit, the lining arch would converge to the tunnel from the surrounding rock, and the stress in the arch would increase first and then decrease. With the increase of fault dip angle, the inward convergence of lining arch crown first increased and then decreased, and the initial damage location was related to the fault dip angle. The damage scope and extent of the tunnel decreased continuously with the increase of fault included angle. The circumferential stress concentration was obviously affected by the fault included angle. With the increase of fault tendency, the radar stress gradually changed from "X" to "cross-shaped". Therefore, the tunnel should cross the fault orthogonally as far as possible in the stage of tunnel location and pre-reinforcement measures should be taken in advance when crossing a wide fault to ensure the safety and stability of the tunnel.

Key words: active faults, shield tunnels, numerical analysis, damage evolution, mechanical properties

CLC Number: 

  • TU43

Fig.1

Geological section of the tunnel"

Fig.2

Core sampling"

Fig.3

Three dimensional numerical model"

Fig.4

Sliding friction contact surface"

Table 1

Rock parameters"

材料类型 密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 黏聚力/kPa
断层破碎带 2 040 110 0.30 28 35
强风化花岗岩 2 296 300 0.28 36 150

Fig.5

Concrete uniaxial stress-strain relation diagram"

Table 2

Partial damage parameters of concrete"

应力/MPa 非弹性应变/% 受压损伤因子 应力/MPa 开裂应变/% 损伤/%
18.9 0 0 2.73 0 0
32.9 0.048 0.183 4 2.42 0.002 13.940
33.1 0.091 0.283 1 2.02 0.005 27.222
31.9 0.111 0.326 0 1.70 0.008 37.648
28.5 0.155 0.410 4 1.45 0.010 45.651
23.1 0.221 0.517 6 1.26 0.012 51.870
17.7 0.304 0.620 7 1.12 0.014 56.801
13.2 0.402 0.704 9 0.91 0.018 64.082
8.0 0.619 0.810 6 0.57 0.030 77.057
5.6 0.828 0.861 2 0.31 0.062 88.159

Table 3

Mechanical parameters of support measures"

材料类型 力学行为 密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 黏聚力/kPa
盾构机 弹性 7 600 200 000 0.30
衬砌 弹性 2 500 24 150 0.20 16.5 25
注浆层(初始) 弹性 2 420 48 0.35
注浆层(硬化) 弹性 2 420 230 0.30

Table 4

The calculation condition of the numerical models"

断层倾角/(°) 断层宽度/m 断层倾向/(°) 断层倾角/(°) 断层宽度/m 断层倾向/(°)
90 3D 0 75 20 0
90 4D 0 90 20 0
90 5D 0 90 20 45
90 5.5D 0 90 20 60
90 7D 0 90 20 75
60 20 m 0 90 20 90

Fig.6

Settlement of tunnel vault and arch bottom"

Fig.7

Stress in the key ring of tunnels"

Fig.8

Overall tensile damage of tunnels"

Fig.9

Compression damage to tunnel linings"

Fig.10

Settlement of tunnel vault and arch bottom"

Fig.11

Stress in the key ring of tunnels"

Fig.12

Overall tensile damage of tunnels"

Fig.13

Settlement of tunnel vault and arch bottom"

Fig.14

Stress in the key ring of tunnels"

Fig.15

Tensile damage to tunnel linings"

Fig.16

Overall tensile damage of tunnels"

Table 5

Deformation characteristics of tunnels under various calculation conditions"

计算工况 拱顶最大沉降/mm 拱底最大沉降/mm 拱侧最大水平位移/mm
工况Ⅰ-1 (w=3D) 3.9 1.9 1.5
工况Ⅰ-2 (w=4D) 5.2 2.4 1.4
工况Ⅰ-3 (w=5D) 6.4 2.6 1.9
工况Ⅰ-4 (w=5.5D) 8.3 2.7 3.8
工况Ⅰ-5 (w=7D) 9.8 4.2 4.7
工况Ⅱ-1 (β=60°) 6.5 1.9 0.2
工况Ⅱ-2 (β=75°) 3.5 1.9 0.1
工况Ⅱ-2 (β=90°) 4.4 2.1 0.1
工况Ⅲ-1 (α=45°) 4.9 2.6 0.2
工况Ⅲ-2 (α=60°) 4.3 2.2 0.2
工况Ⅲ-3 (α=75°) 4.8 2.5 0.1
工况Ⅲ-3 (α=90°) 4.4 2.1 0.1
1 秦峰, 王少飞, 肖博, 等. 截至2021年底中国10 km以上特长公路隧道统计[J]. 隧道建设(中英文), 2022, 42 (6): 1111- 1116.
QIN Feng , WANG Shaofei , XIAO Bo , et al. Statistics of super-long highway tunnels over 10 km in China as of the end of 2021[J]. Tunnel Construction, 2022, 42 (6): 1111- 1116.
2 洪开荣, 冯欢欢. 中国公路隧道近10年的发展趋势与思考[J]. 中国公路学报, 2020, 33 (12): 62- 76.
doi: 10.19721/j.cnki.1001-7372.2020.12.005
HONG Kairong , FENG Huanhuan . Development trends and views of highway tunnels in China over the past decade[J]. China Journal of Highway and Transport, 2020, 33 (12): 62- 76.
doi: 10.19721/j.cnki.1001-7372.2020.12.005
3 邢志豪, 朱斌, 王健, 等. 溶洞注浆加固的空间属性对地铁盾构隧道建设安全的影响效应[J]. 山东大学学报(工学版), 2022, 52 (4): 183- 190.
XING Zhihao , ZHU Bin , WANG Jian , et al. Influence of spatial attribute of karst cave grouting reinforcement on the safety of subway shield tunnel construction[J]. Journal of Shandong University (Engineering Science), 2022, 52 (4): 183- 190.
4 韩常领, 夏才初, 徐晨. 软岩隧道挤压性大变形控制技术研究进展[J]. 地下空间与工程学报, 2020, 16 (增刊1): 492- 505.
HAN Changling , XIA Caichu , XU Chen . Research progress for the control measures of the tunnel large deformation in squeezing rocks[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (Suppl.1): 492- 505.
5 汪振, 钟紫蓝, 赵密, 等. 正断型断裂模拟及其对山岭隧道影响研究[J]. 岩土工程学报, 2020, 42 (10): 1876- 1884.
WANG Zhen , ZHONG Zilan , ZHAO Mi , et al. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (10): 1876- 1884.
6 谢远. 断层破碎带段隧道围岩稳定性分析及变形控制研究[D]. 西安: 长安大学, 2021.
XIE Yuan. Stability analysis and deformation control of tunnel surrounding rock in fault fracture zone[D]. Xi'an: Chang'an University, 2021.
7 徐杨. 青岛地铁施工过断层破碎带围岩稳定性分析[D]. 青岛: 青岛理工大学, 2018.
XU Yang. Stability analysis of surrounding rock in Qingdao Metro construction through fault fracture zone[D]. Qingdao: Qingdao University of Technology, 2018.
8 张庆艳, 陈卫忠, 袁敬强, 等. 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41 (6): 1911- 1922.
ZHANG Qingyan , CHEN Weizhong , YUAN Jingqiang , et al. Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J]. Rock and Soil Mechanics, 2020, 41 (6): 1911- 1922.
9 王涵, 高永涛, 李建旺. 隧道穿越断层破碎带施工方案及力学效应研究[J]. 公路, 2021, 66 (2): 316- 323.
WANG Han , GAO Yongtao , LI Jianwang . Research on construction plan and mechanical effect of highway tunnel crossing fault fracture zone[J]. Highway, 2021, 66 (2): 316- 323.
10 马丹, 段宏宇, 张吉雄, 等. 断层破碎带岩体突水灾害的蠕变-冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报, 2021, 40 (9): 1751- 1763.
MA Dan , DUAN Hongyu , ZHANG Jixiong , et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (9): 1751- 1763.
11 李相辉, 张庆松, 张霄, 等. 非均质断层破碎带注浆扩散机理[J]. 工程科学与技术, 2018, 50 (2): 67- 76.
LI Xianghui , ZHANG Qingsong , ZHANG Xiao , et al. Grouting diffusion mechanism in heterogeneous fault-fracture zone[J]. Advanced Engineering Sciences, 2018, 50 (2): 67- 76.
12 李凤岭. 穿越断层破碎带铁路隧道施工与监测[J]. 青岛理工大学学报, 2017, 38 (2): 17- 25.
LI Fengling . Construction and monitoring of railway tunnel through fault fracture zone[J]. Journal of Qingdao University of Technology, 2017, 38 (2): 17- 25.
13 ZAHERI M , RANJBARNIA M , DIAS D , et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23, 100333.
14 刘学增, 刘金栋, 李学锋, 等. 逆断层铰接式隧道衬砌的抗错断效果试验研究[J]. 岩石力学与工程学报, 2015, 34 (10): 2083- 2090.
LIU Xuezeng , LIU Jindong , LI Xuefeng , et al. Experimental research on effect of anti-dislocation of highway tunnel lining with hinge joints in thrust fault[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2083- 2090.
15 MEHDI Sabagh , ABBAS Ghalandarzadeh . Centrifuge experiments for shallow tunnels at active reverse fault intersection[J]. Frontiers of Structural and Civil Engineering, 2020, 14, 1- 15.
16 KONTOGIANNI V A , STIROS S C . Earthquakes and seismic faulting: effects on tunnel[J]. Turkish Journal of Earth Sciences, 2003, 12 (1): 153- 156.
17 李玉生, 翁贤杰, 王人杰, 等. 隧道穿越断层破碎带突水突泥机理模拟试验研究[J]. 公路交通科技, 2020, 37 (12): 89- 99.
LI Yusheng , WENG Xianjie , WANG Renjie , et al. Experimental study on simulating mechanism of water and mud inrush in tunnel crossing fault fracture zone[J]. Journal of Highway and Transportation Research and Development, 2020, 37 (12): 89- 99.
18 贾艳领, 钟乃龙, 欧阳璐, 等. 断层破碎带隧道地质综合超前预报应用实践[J]. 公路, 2021, 66 (3): 353- 359.
JIA Yanling , ZHONG Nailong , OUYANG Lu , et al. Application practice of geological comprehensive advance prediction for tunnel in fault fracture zone[J]. Highway, 2021, 66 (3): 353- 359.
19 卢庆钊. 基于AHP-Fuzzy的隧道穿富水断层破碎带突水涌泥评估[J]. 地下空间与工程学报, 2021, 17 (增刊1): 439- 448.
LU Qingzhao . Risk assessment of water and mud inrush in tunnel crossing water-rich fault fracture zone based on AHP-fuzzy[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Suppl.1): 439- 448.
20 KIREMIDJIAN A S . Reliability of structures subjected to differential fault slip[J]. Earthquake Engineering & Structural Dynamics, 1984, 12 (5): 603- 618.
21 王丽萍, 张伟, 罗文文, 等. 基于区域地震活动性参数的断层错动量概率分析方法[J]. 自然灾害学报, 2018, 27 (4): 166- 170.
WANG Liping , ZHANG Wei , LUO Wenwen , et al. Seismic hazard analysis method for fault rupture and dislocation based on regional seismicity parameters[J]. Journal of Natural Disasters, 2018, 27 (4): 166- 170.
22 BAZIAR M H , NABIZADEH A , MEHRABI R , et al. Evaluation of underground tunnel response to reverse fault rupture using numerical approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 83, 1- 17.
23 ZHAO Kun , CHEN Weizhong , YANG Diansen , et al. Mechanical tests and engineering applicability of fiber plastic concrete used in tunnel design in active fault zones[J]. Tunnelling and Underground Space Technology, 2019, 88, 200- 208.
24 安韶, 陶连金, 边金, 等. 跨活动断裂带城市浅埋地铁隧道结构两阶段设计方法研究[J]. 中南大学学报(自然科学版), 2020, 51 (9): 2558- 2570.
AN Shao , TAO Lianjin , BIAN Jin , et al. Study on two-level design method of urban shallow subway tunnel structure crossing active fault[J]. Journal of Central South University(Science and Technology), 2020, 51 (9): 2558- 2570.
25 焦鹏飞, 来弘鹏. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报, 2019, 52 (2): 106- 117.
JIAO Pengfei , LAI Hongpeng . Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal, 2019, 52 (2): 106- 117.
26 丁祖德, 肖南润, 文锦诚, 等. 逆断层错动下ECC衬砌结构非线性力学响应分析[J]. 铁道科学与工程学报, 2021, 18 (9): 2375- 2384.
DING Zude , XIAO Nanrun , WEN Jincheng , et al. Nonlinear mechanical response analysis of ECC lining structure under reverse fault dislocation[J]. Journal of Railway Science and Engineering, 2021, 18 (9): 2375- 2384.
27 ZHANG Jiaqi , LI Shucai , ZHANG Qingsong , et al. Mud inrush flow mechanisms: a case study in a water-rich fault tunnel[J]. Bulletin of Engineering Geology and the Environment, 2019, 78 (8): 1- 17.
28 祁文睿, 高永涛. 公路隧道穿越软弱破碎围岩综合施工及监测技术研究[J]. 公路交通科技, 2021, 38 (11): 88- 96.
QI Wenrui , GAO Yongtao . Study on comprehensive construction and monitoring technology of highway tunnel crossing weak and fractured surrounding rock[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (11): 88- 96.
29 XUE Yiguo , ZHOU Binghua . Deformation rule and mechanical characteristic analysis of subsea tunnel crossing weathered trough[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 114, 1- 9.
30 马栋, 闫肃, 王武现. 赣深高铁龙南隧道大型富水断层破碎带施工技术[J]. 隧道建设(中英文), 2020, 40 (11): 1634- 1641.
MA Dong , YAN Su , WANG Wuxian . Construction technology of large-scale water-rich fault and fractured zone in Longnan Tunnel on Jiangxi-Shenzhen High-peed Railway[J]. Tunnel Construction, 2020, 40 (11): 1634- 1641.
31 冉万云. 近水库铁路隧道穿越F4断层施工与监测分析[J]. 重庆交通大学学报(自然科学版), 2015, 34 (6): 37- 42.
RAN Wanyun . Construction and monitoring of railway tunnel adjacent to reservoir through F4 fault[J]. Journal of Chongqing Jiaotong University(Natural Science), 2015, 34 (6): 37- 42.
32 RODRIGUEZ L E M. Estudio de los movimientos originados por la excavación de túneles con escudos de presión de tierras en lossue los tosquizos de Madrid[D]. Corua, Spain: University of La Corua, 2000.
33 中国建筑科学研究院. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
34 CHEN G M , TENG J G , CHEN J F . Finite-element modeling of intermediate crack debonding in FRP-plated RC beams[J]. Journal of Composites for Construction, 2011, 15 (3): 339- 353.
35 LV Jianbin , LI Xulong , LI Zhanrong , et al. Numerical simulations of construction of shield tunnel with small clearance to adjacent tunnel without and with isolation pile reinforcement[J]. KSCE Journal of Civil Engineering, 2019, 24 (1): 295- 309.
36 李莉, 高谦, 王正辉. 金川二矿区深度1 178 m中段采场巷道支护设计与稳定性分析[J]. 有色金属(矿山部分), 2005, (1): 19- 22.
LI Li , GAO Qian , WANG Zhenghui . Support design and stability analysis of the middle section stope roadway with a depth of 1 178 m in Jinchuan No. 2 Mining Area[J]. Nonferrous Metals(Mining), 2005, (1): 19- 22.
37 陈玉. 共和隧道围岩大变形机制及防治措施研究[D]. 重庆: 重庆大学, 2008.
CHEN Yu. Study on large deformation mechanism and prevention technique of the wall rock in gong he tunnel[D]. Chongqing: Chongqing University, 2008.
38 张自政, 李树清, 于宪阳, 等. 深井穿断层回采巷道围岩变形机理与稳定控制对策[J]. 湖南科技大学学报(自然科学版), 2020, 35 (1): 10- 16.
ZHANG Zizheng , LI Shuqing , YU Xianyang , et al. Deformation mechanism and stability control of surrounding rock in deep roadway through the fault[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2020, 35 (1): 10- 16.
39 万飞, 谭忠盛, 马栋. 关角隧道F2-1断层破碎带支护结构优化设计[J]. 岩石力学与工程学报, 2014, 33 (3): 531- 538.
WAN Fei , TAN Zhongsheng , MA Dong . Optimizing design of support structure for GuanJiao tunnel in fault-rupture zone F2-1[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (3): 531- 538.
40 何满潮. 煤矿软岩工程与深部灾害控制研究进展[J]. 煤炭科技, 2012, (3): 1- 5.
HE Manchao . Research progress on soft rock engineering and deep disaster control in coal mines[J]. Coal Science & Technology Magazine, 2012, (3): 1- 5.
41 朱淳, 何满潮, 张晓虎, 等. 恒阻大变形锚杆非线性力学模型及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42 (7): 1911- 1924.
ZHU Chun , HE Manchao , ZHANG Xiaohu , et al. Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior[J]. Rock and Soil Mechanics, 2021, 42 (7): 1911- 1924.
42 王政坛. 小直径锚索在高地应力大变形隧道施工中的应用[J]. 隧道建设, 2005, (3): 42- 45.
[1] XU Zhen, LI Deming, WANG Bin, ZHAN Guyi, ZHANG Shijie. Application of pure steel fiber concrete segment in hard rock tunnel [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 44-49.
[2] Ziyao XU,Song YU,Qiang FU. Numerical simulation of mechanical properties of layered jointed rock mass [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 66-72.
[3] SU Chenggong, LIU Yan, WANG Weiqiang, WANG Yuhua. The influence of indentation on the surface residual stress of stainless steel [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 90-96.
[4] ZHANG Wanzhi, LIU Hua, ZHANG Feng, GAO Lei, YAO Chen, LIU Guanzhi. Mechanical properties of tower and beam synchronous construction of cable-stayed bridge [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 120-126.
[5] ZHANG Hongbo, XIE Quanyi, YUE Hongya, MENG Qingyu. Study on performance of electromagnetic shielding mortar mixed with copper coated fabric fiber [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 56-61.
[6] QIN Xiao-qiong1,2, LIU De-xue1*. Numerical analysis of deforming force for the backward extrusion
process based on slipline field theory
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 66-69.
[7] LIANG Bing, LAN Bo, WANG Jun-guang. Tri-axial compression test study on mechanical characteristics of the oil shale under the water [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(5): 82-85.
[8] SUN Lili, JIA Yuxi, SUN Sheng, MA Fengde. Influence of interfacial strength on fracture process and mechanical properties of fiber composites [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 101-103.
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92-95.
[10] ZHAO Yuan-bin,SUN Feng-zhong,WANG Kai,GAO Ming . Three dimensional numerical analyses of heat and mass transfer in a wet cooling tower [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 36-41 .
[11] XUE Qiang,AI Xing,ZHAO Jun,ZHOU Yong-hui,YUAN Xun-liang . Effects of TiC nano-sized particle on the microstructure and properties of Si3N4 composite ceramics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 69-72 .
[12] SUN Jun-long,ZHANG Wo-bo,DENG Jian-xin,LIU Chang-xia . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 6-09 .
[13] QU Yan-peng,LI Chun-feng,SUI Rong-juan,TENG Shu-ge,WANG Xiao-peng . The numerical analysis on structural parameters of self-excited pulsed jet to the eddy ring [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 17-21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .