Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (6): 41-49.doi: 10.6040/j.issn.1672-3961.0.2022.108

• 交通工程——智慧交通专题 • Previous Articles    

Data fusion method of multi roadside LiDAR based on coordinate transformation

ZHOU Yong1, LÜ Chen2,3, HOU Fujin1, GUO Xinming2,3*, SONG Xiuguang2   

  1. 1. Shandong Hi-Speed Construction Management Group Co. Ltd., Jinan 250014, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    3. Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
  • Published:2022-12-23

CLC Number: 

  • TN958.98
[1] WILLIAMS K. Synthesis of transportation applications of mobile LiDAR[J]. Remote Sensing, 2013, 5(9): 4652-4692.
[2] WU J Q, XU H, ZHAO J X. Automatic lane identi-fication using the roadside LiDAR sensors[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 25-34.
[3] SONG X. Augmented multiple vehicles'trajectories extr-action under occlusions with roadside LiDAR data[J]. IEEE Sensors Journal, 2021, 21(19): 21921-21930.
[4] WU J Q. Automatic ground points filtering of roadside LiDAR data using a channel-based filtering algorithm[J]. Optics and Laser Technology, 2019, 115: 374-383.
[5] 胡远志. 基于激光雷达点云与图像融合的车辆目标检测方法[J]. 汽车安全与节能学报, 2019, 10(4): 451-458. HU Yuanzhi. Vehicle target detection method based on LiDAR point cloud and image fusion[J]. Journal of Automotive Safety and Energy Saving, 2019, 10(4): 451-458.
[6] 李仁忠,杨曼,田瑜,等. 基于iss特征点结合改进icp的点云配准算法[J].激光与光电子学进展, 2017, 54(11): 312-319. LI Renzhong, YANG Man, TIAN Yu, et al. Improved ICP point cloud registration algorithm based on ISS feature point combination[J]. Laser & Optronics Progress, 2017, 54(11): 312-319.
[7] ZHANG X, GLENNIE C, KUSARI A. Change detection from differential airborne LiDAR using a weighted anisotropic iterative closest point algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3338-3346.
[8] ZHENG Z Y, LI Y, WU J. LiDAR point cloud registration based on improved ICP method and SIFT feature[C] // In 3rd IEEE International Conference on Progress in Informatcs and Computing(IEEE PIC). Nanjing, China: IEEE: 2015: 588-592.
[9] CAI Z P. Practical optimal registration of terrestrial LiDAR scan pairs[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2019, 147: 118-131.
[10] 左超,鲁敏,谭志国,等. 一种新的点云拼接算法[J].中国激光, 2012, 39(12): 217-224. ZUO Chao, LU Min, TAN Zhiguo, et al. A new point cloud splicing algorithm[J]. China Lasers, 2012, 39(12): 217-224.
[11] 赵明波,何峻,罗小波,等. 基于改进迭代最近点算法的两视角激光雷达数据配准[J]. 光学学报, 2012, 32(11): 305-314. ZHAO Mingbo, HE Jun, LUO Xiaobo, et al. Two-view Lidar data registration based on improved iterative nearest point algorithm[J]. Acta Optica Sinica, 2012, 32(11): 305-314.
[12] 邓嘉,侯晨辉,刁婉,等. 三维点云数据的配准算法综述[J].信息与电脑(理论版), 2017,(23): 51-52. DENG Jia, HOU Chenhui, DIAO Wan, et al. Overview of registration algorithms for 3D point cloud data[J]. Information and Computers(Theory Edition), 2017(23): 51-52.
[13] CHENG L. Registration of laser scanning point clouds: a review[J]. Sensors, 2018, 18(5): 25.
[14] TIAN Y. Projection and integration of connected-infrastructure LiDAR sensing data in a global coordinate[J]. Optics and Laser Technology, 2021, 144: 9.
[15] TIAN Y. A data mapping method for roadside LiDAR sensors[C] // Proceedings of IEEE Intelligent Transportation Systems Conference(IEEE-ITSC). Auckland, New Zealand: IEEE: 2019.
[16] ZONG W P. A survey of laser scan matching methods[J]. Chinese Optics, 2018, 11(6): 914-930.
[17] GOLUB G H, VANLOAN C F. An analysis of total least-squares problem[J]. Siam Journal on Numerical Analysis, 1980, 17(6): 883-893.
[18] 丁克良,欧吉坤,陈义.整体最小二乘法及其在测量数据处理中的应用[C] //中国测绘学会第九次全国会员代表大会论文集. 北京,中国:中国测绘学会,2009:399-405.
[19] 陆珏,陈义,郑波. 总体最小二乘方法在三维坐标转换中的应用[J].大地测量与地球动力学, 2008(5): 77-81. LU Yu, CHEN Yi, ZHENG Bo. Application of total least squares method in 3D coordinate transformation[J]. Geodesy and Geodynamics, 2008(5): 77-81.
[20] 王乐洋,许才军. 总体最小二乘研究进展[J].武汉大学学报(信息科学版), 2013, 38(7): 850-856. WANG Yueyang, XU Caijun. Progress in the study of total least squares[J]. Journal of Wuhan University(Information Science), 2013, 38(7): 850-856.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!