Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (4): 118-130.doi: 10.6040/j.issn.1672-3961.0.2021.302
ZHANG Chunyan, HAN Meng*, SUN Rui, DU Shiyu, SHEN Mingyao
CLC Number:
[1] LIU J, WANG K, FUNG B C M. Direct discovery of high utility itemsets without candidate generation[C] //Proceedings of IEEE International Conference on Data Mining. Brussels, Belgium: IEEE, 2012: 984-989. [2] RYANG H, YUN U. High utility pattern mining over data streams with sliding window technique[J]. Expert Systems with Applications, 2016, 57(9): 214-231. [3] LIU Y, LIAO W K, CHOUDHARY A N. A two-phase algorithm for fast discovery of high utility itemsets[C] //Proceedings of Pacific-asia Conference on Advances in Knowledge Discovery and Data Mining. Hanoi, Vietnam: Springer-Verlag, 2005: 689-695. [4] LIU M, QU J. Mining high utility itemsets without candidate generation[C] //Proceedings of ACM International Conference on Information and Knowledge Management. Hawaii, USA: ACM, 2012: 55-64. [5] THU-LAN D, HERI R, KJETIL N, et al. Towards efficiently mining closed high utility itemsets from incremental databases[J]. Knowledge-Based Systems, 2019, 165(2): 13-29. [6] TSENG V S, WU C W, FOURNIER-VIGER P, et al. Efficient algorithms for mining the concise and lossless representation of high utility itemsets[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 726-739. [7] AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721. [8] LIN J C W, GAN W, HONG T P. A fast maintenance algorithm of the discovered high-utility itemsets with transaction deletion[J]. Intelligent Data Analysis, 2016, 20(4): 891-913. [9] LIN J C W, GAN W, HONG T P, et al. An incremental high-utility mining algorithm with transaction insertion[J]. The Scientific World Journal, 2015, 2(1): 1-15. [10] FOURNIER-VIGER P, LIN J C W, GUENICHE T, et al. Efficient incremental high utility itemset mining[C] //Proceedings of Ase Big Data & Social Informatics. Kaohsiung, China: ACM, 2015: 1-6. [11] YUN U, RYANG H, LEE G, et al. An efficient algorithm for mining high utility patterns from incremental databases with one database scan[J]. Knowledge-Based Systems, 2017, 124(5): 188-206. [12] YUN U, NAM H, LEE G, et al. Efficient approach for incremental high utility pattern mining with indexed list structure[J]. Future Generation Computer Systems, 2019, 95(6): 221-239. [13] LIN C W, LAN G C, HONG T P. An incremental mining algorithm for high utility itemsets[J]. Expert Systems with Applications, 2012, 39(8): 7173-7180. [14] LIN C W, HONG T P, GAN W, et al. Incrementally updating the discovered sequential patterns based on pre-large concept[J]. Intelligent Data Analysis, 2015, 19(5): 1071-1089. [15] AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721. [16] YUN U, KIM D. Efficient algorithm for mining high average-utility itemsets in incremental transaction databases[J]. Applied Intelligence, 2017, 47(1): 114-131. [17] YUN U, RYANG H. Incremental high utility pattern mining with static and dynamic databases[J]. Applied Intelligence, 2015, 42(2): 323-352. [18] 吴倩, 王林平, 罗相洲, 等. 动态数据库中增量Top-k高效用模式挖掘算法[J]. 计算机应用研究, 2017, 34(5): 1401-1405. WU Qian, WANG Linping, LUO Xiangzhou, et al. Incremental Top-k high utility pattern mining algorithm in dynamic database[J]. Application Research of Computers, 2017, 34(5): 1401-1405. [19] LEE J, YUN U, LEE G, et al. Efficient incremental high utility pattern mining based on pre-large concept[J]. Engineering Applications of Artificial Intelligence, 2018, 72(5): 111-123. [20] WU C W, FOURNIER-VIGER P, YU P S, et al. Efficient mining of a concise and lossless representation of high utility itemsets[J]. Knowledge and Data Engineering, 2015, 27(3): 726-739. [21] WU C W, FOURNIER-VIGER P, GU J Y, et al. Mining closed+ high utility itemsets without candidate generation[C] //Proceedings of 2015 Conference on Technologies and Applications of Artificial Intelligence. Tainan, China: IEEE, 2016: 187-194. [22] SAHOO J, DAS A K, GOSWAMI A. An efficient fast algorithm for discovering closed+ high utility itemsets[J]. Applied Intelligence, 2016, 45(1): 44-74. [23] DAM T L, LI K, FOURNIER-VIGER P, et al. CLS-Miner: efficient and effective closed high utility itemset mining[J]. Frontiers of Computer Science, 2019, 13(2): 1-25. [24] LTTN A, MI T. An efficient method for mining high utility closed itemsets[J]. Information Sciences, 2020, 495(4): 78-99. [25] KRISHNAMOORTHY S. HMiner: efficiently mining high utility[J]. Expert Systems with Applications, 2017, 90(30): 168-183. [26] SRIKUMAR K. Pruning strategies for mining high utility itemsets[J]. Expert Systems with Applications, 2015, 42(5): 2371-2381. [27] FOURNIER-VIGER P, ZIDA S, LIN J C W, et al. EFIM-Closed: fast and memory efficient discovery of closed high-utility itemsets[J]. Machine Learning and Data Mining in Pattern Recognition, 2016, 9729(5): 199-213. |
[1] | Jucheng YANG,Shujie HAN,Lei MAO,Xiangzi DAI,Yarui CHEN. Review of capsule network [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 1-10. |
[2] | Bo FANG,Hongmei CHEN. A novel double strategies evolutionary fruit fly optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 22-31. |
[3] | WU Hongyan, JI Junzhong. Flower pollination algorithm-based functional module detection in protein-protein interaction networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 21-30. |
[4] | ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29. |
[5] | REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62. |
[6] | ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85. |
[7] | WU Huimin, WU Jingli. An improved cycle basis algorithm for haplotyping a diploid individual [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 9-14. |
[8] | WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48. |
[9] | REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6. |
[10] | WEN Zhi-qiang, ZHU Wen-qiu, HU Yong-xiang. A classification method of halftone image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 7-12. |
[11] | XU Shan-shan, LIU Ying-an*, XU Sheng. The enhancement algorithm of the boundary information in stereo matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 43-49. |
[12] | CHEN Ming-zhi1, 2, CHEN Jian3, XU Chun-yao3, YU Lun3, LIN Bo-gang1, 2. A new clustering algorithm for user access patterns based on network virtual environments [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 43-49. |
[13] | WU Tian-zhu . The blind color image watermarking algorithm based on the RBF neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 51-55 . |
[14] | ZHANG Jin-song,LI Qi-qiang,WANG Zhao-xia . Hybrid particle swarm optimization algorithm based on the chaos search [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 47-50 . |
[15] | JIA Yin-liang,ZHANG Huan-chun,JING Ya-zhi,LIU Jing . A sixstep algorithm for line drawing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 61-64 . |
|