Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (3): 109-116.doi: 10.6040/j.issn.1672-3961.0.2022.004

• Chemistry and Environment • Previous Articles     Next Articles

Preparation method and system of engineering nanoparticle aerosol

Yi HAN(),Zhen XU,Tian GUAN,Yang CUI,Hui HU,Liming MA   

  1. School of Automobile, Chang′an University, Xi′an 710064, Shaanxi, China
  • Received:2021-12-31 Online:2022-06-20 Published:2022-06-23

Abstract:

A carbon nanoparticle aerosol preparation system with adjustable flow rate and mass concentration was designed based on the atomization method of nanomaterial suspension. The clean air and carbon nanotube material dispersion were sprayed and mixed in a stainless steel atomizing chamber to obtain an unstable aerosol. With the embedded temperature control system, flow control system and mass concentration control system, the unstable aerosol could be heated at a constant temperature in expansion chamber. Then the unstable aerosol expanded rapidly and reached uniformity. A relatively stable and uniform nanoparticle aerosol flow was obtained by controlling the valve body with an adjustable opening. It was demonstrated by experiments that under the condition of ideal temperature control system, the maximum error between the flow rate and the set value was 9.312 mL/min, and the maximum error between the mass concentration and the set value was 0.206 mg/m3. Nanoparticle aerosol with stable flow and mass concentration was generated basically.

Key words: engineering nanoparticle, aerosol, preparation method, flow control, mass concentration control

CLC Number: 

  • TB302.1

Table 1

Working parameters of precision peristaltic pump BT100-2J"

转速/(r·min-1) 通信接口 长×宽×高/(mm×mm×mm) 电压/V 工作温度/℃ 最大参考流量/(mL·min-1)
0.1~100 RS485 232×141×149 90~260 0~40 270

Fig.1

Peristaltic pump"

Fig.2

Thermal resistance"

Table 2

Thermal resistance parameters of PT100"

工作温度/℃ 标称电阻/Ω 长期稳定性/h 推荐工作电流/mA
-200~600 100 1000 0.5

Fig.3

Ultrasonic atomizing nozzle"

Fig.4

Inhalable particulate matter detector"

Fig.5

Aerosol generator system structure"

Fig.6

Embedded control system"

Fig.7

Control flow of constant temperature heating system"

Fig.8

Temperature curve of constant temperature heating system"

Fig.9

Flow control system control flow chart"

Fig.10

Flow control system curve"

Fig.11

Mass control flow of concentration control system"

Fig.12

Concentration control system curve"

Fig.13

Upper computer control system software interface diagram"

Fig.14

Aerosol generating equipment"

1 POPE C A , EZZATI M , DOKERY D W . Fine-particulate air pollution and life expectancy in the United States[J]. New England Journal of Medicine, 2009, 360 (4): 376- 386.
doi: 10.1056/NEJMsa0805646
2 XU Ze , NIU Lu , ZHANG Zhengfeng , et al. The impacts of land supply on PM2.5 concentration: evidence from 292 cities in china from 2009 to 2017[J]. Journal of Cleaner Production, 2022, 347, 1- 16.
3 LAI H K , TSANG H , THACH T Q , et al. Health impact assessment of exposure to fine particulate matter based on satellite and meteorological information[J]. Envir-onmental Science Processes and Impacts, 2014, 16 (2): 239- 246.
doi: 10.1039/C3EM00357D
4 ZHANG Z X , JIANG Z , SHANGGUAN W F . Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016, 264, 270- 278.
doi: 10.1016/j.cattod.2015.10.040
5 BAKAND S , HAYES A , DECHSAKULTHORN F . Nanoparticles: a review of particle toxicology following inhalation exposure[J]. Inhalation Toxicology, 2012, 24 (2): 125- 135.
doi: 10.3109/08958378.2010.642021
6 麦华俊, 蒋靖坤, 何正旭, 等. 一种纳米气溶胶发生系统的设计及性能测试[J]. 环境科学, 2013, 34 (8): 2950- 2953.
MAI Huajun , JIANG Jingkun , HE Zhengxu , et al. Design and performance test of a nano aerosol generation system[J]. Environmental Science, 2013, 34 (8): 2950- 2953.
7 JIANG J K , HOGAN C J , CHEN D R , et al. Aerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanisms[J]. Journal of Applied Physics, 2007, 102 (3): 117.
8 JIANG J K , OBERDRSTER G , ELDER A , et al. Does nanoparticle activity depend upon size and crystal phase[J]. Nanotoxicology, 2008, 2 (1): 33- 42.
doi: 10.1080/17435390701882478
9 王轩, 陈建华, 陈建民, 等. 实验室发生纳米气溶胶吸湿性表征[J]. 环境科学研究, 2011, 24 (6): 621- 631.
WANG Xuan , CHEN Jianhua , CHEN Jianmin , et al. Characterization of nano-aerosol hygroscopicity in the laboratory[J]. Environmental Science Research, 2011, 24 (6): 621- 631.
10 SCHEIBEL H G , PORSTENDORFER J . Generation of monodisperse Ag and NaCl-aerosols with particle diameters between 2 and 300 nm[J]. Journal of Aerosol Science, 1983, 14 (2): 113- 126.
doi: 10.1016/0021-8502(83)90035-6
11 CHEN D R , PUI D Y H , KAUFMAN S L . Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range[J]. Journal of Aerosol Science, 1995, 26 (6): 963- 977.
doi: 10.1016/0021-8502(95)00027-A
12 GEORGE B , VINCENT V , YURTERI C U , et al. Generation and sizing of particles for aerosol based nanotechnology[J]. Powder and Particle, 2014, 26, 13- 35.
13 UDE S , FERNÁNDEZ De La Mora J . Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides[J]. Journal of Aerosol Science, 2005, 36 (10): 1224- 1237.
doi: 10.1016/j.jaerosci.2005.02.009
14 BEHRA R , KRUG H . Nanoecotoxicology: nanoparticles at large[J]. Nature Nanotechnology, 2008, 3 (5): 253- 254.
doi: 10.1038/nnano.2008.113
15 王小华, 何怡刚. 铂电阻Pt100特性数学模型[J]. 传感器与微系统, 2003, 22 (10): 33- 34.
doi: 10.3969/j.issn.1000-9787.2003.10.011
WANG Xiaohua , HE Yigang . The mathematical model of platinum resistance Pt100 characteristics[J]. Sensors and Microsystems, 2003, 22 (10): 33- 34.
doi: 10.3969/j.issn.1000-9787.2003.10.011
16 霍钰, 王功. 基于铂热电阻的高温检测系统设计与优化[J]. 传感器与微系统, 2019, 38 (4): 108- 110.
HUO Yu , WANG Gong . Design and optimization of high temperature detection system based on platinum thermal resistance[J]. Sensors and Microsystems, 2019, 38 (4): 108- 110.
17 杨歆雨, 肖锋. 超声雾化喷嘴的设计[J]. 汽车实用技术, 2019, (5): 152- 153.
YANG Xinyu , XIAO Feng . The design of ultrasonic atomization nozzle[J]. Practical Technology of Automobile, 2019, (5): 152- 153.
18 麦锐. 分析嵌入式计算机技术及应用[J]. 计算机产品与流通, 2019, (7): 13.
MAI Rui . Analysis of embedded computer technology and application[J]. Computer Products and Circulation, 2019, (7): 13.
19 吕小凤, 杜丹, 张万玉. 一种A/D转换电路的设计与应用[J]. 无线电工程, 2019, 49 (11): 1004- 1008.
doi: 10.3969/j.issn.1003-3106.2019.11.014
LV Xiaofeng , DU Dan , ZHANG Wanyu . Design and application of an A/D conversion circuit[J]. Radio Engineering, 2019, 49 (11): 1004- 1008.
doi: 10.3969/j.issn.1003-3106.2019.11.014
20 张顺利, 赵俊东, 张宁. 一种改进PID算法的加热系统仿真分析研究[J]. 今日制造与升级, 2021, (11): 77- 79.
ZHANG Shunli , ZHAO Jundong , ZHANG Ning . Research on simulation analysis of heating system with improved PID algorithm[J]. Manufacturing and Upgrading Today, 2021, (11): 77- 79.
21 雷翔霄, 周志光. 一种改进的PID控制算法的实现[J]. 电子技术, 2010, (3): 9- 10.
LEI Xiangxiao , ZHOU Zhiguang . The realization of an improved PID control algorithm[J]. Electronic Technology, 2010, (3): 9- 10.
22 孙筠. 采用改进PID算法的局部温控仿真[J]. 华侨大学学报, 2016, 37 (3): 287- 290.
SUN Jun . Local temperature control simulation using improved PID algorithm[J]. Journal of Huaqiao University, 2016, 37 (3): 287- 290.
23 厉成金. 工业电炉温度控制系统中数字PID算法的改进研究[J]. 河南化工, 2013, 30 (12): 53- 56.
LI Chengjin . Improvement of digital PID algorithm in temperature control system of industrial electric furnace[J]. Henan Chemical Industry, 2013, 30 (12): 53- 56.
24 刘金琨. 先进PID控制MATLAB仿真[M]. 2版. 北京: 电子工业出版社, 2004: 1- 62.
25 徐晓明, 王雪梅. 基于模糊理论的双闭环复合温度控制方法[J]. 仪表技术, 2021, (6): 30- 32.
XU Xiaoming , WANG Xuemei . Dual closed-loop compound temperature control method based on fuzzy theory[J]. Instrument Technology, 2021, (6): 30- 32.
26 桑占良. 步进电机精确控制系统设计[J]. 科技与创新, 2021, (2): 39- 41.
SANG Zhanliang . Design of precise control system for stepping motor[J]. Technology and Innovation, 2021, (2): 39- 41.
27 许南雁, 郝继飞, 邢青青. PWM控制方法研究[J]. 工矿自动化, 2005, (4): 22- 25.
XU Nanyan , HAO Jifei , XING Qingqing . Research on PWM control method[J]. Industry and Mine Automation, 2005, (4): 22- 25.
[1] ZHANG Wan, YANG Lingxiao, ZHANG Xiongfei, YAN Weida, WANG Xinfeng, WEN Liang,ZHAO Tong, WANG Wenxing. Aerosol optical properties on hazy days and clear days at rural and background sites in Shandong Province of China [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[2] DENG Bin,WANG Jiang . Estimating parameters of a neuron model based on chaos synchronization and adaptive control[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 19 -23 .
[3] GAO Hou-Lei, TIAN Jia, DU Jiang, WU Zhi-Gang, LIU Chu-Min. Distributed generation—new technology in energy development[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 106 -110 .
[4] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[5] CHOU Wu-Sheng, WANG Shuo. Study on the adaptive algorithm of the force reflection robotic master under large stiffness of the environment[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 1 -5 .
[6] LI Guo-zheng1, SHI Miao-jing1, LI Fu-feng2, WANG Yi-qin2. An empirical study on tongue image detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 87 -95 .
[7] JIA Chao,ZHAO Jian-yu,XU Bang-shu,YUE Chang-cheng,LI Shu-chen . Research on rock soil liquefaction of the Qingshui railway tunnel under dynamic vibration load[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 83 -87 .
[8] JI Hui, SHANG Qiang-Sen, SHU Hai-Bei, CUI Xin-Zhuang, LIU Chao. Analysis of the key influencing factors of structure layer stress of asphalt pavement in goaf[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 121 -124 .
[9] YUN Ru-an1,2, DONG Zeng-chuan1, WANG Hao-fang2. Multiobjective optimization of a reservoir based on NSGA2[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(6): 124 -128 .
[10] ZHANG Jianming, LIU Quansheng, TANG Zhicheng, ZHAN Ting, JIANG Yalong. New peak shear strength criterion with inclusion of shear action history[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 77 -81 .