Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (1): 9-18.doi: 10.6040/j.issn.1672-3961.0.2021.308
SUN Hongchang1, ZHOU Fengyu1*, SHAN Mingzhu2, ZHAI Wenwen2, NIU Lanqiang2
CLC Number:
[1] 丁勇,吕婕. 公共建筑能耗与能效披露制度试点问题与建议[J]. 暖通空调, 2021, 51(8): 70-77. DING Y, LÜ J. Problems and suggestions on pilot of building energy consumption and energy efficiency disclosure systems [J]. Journal of HV&AC, 2021, 51(8): 70-77. [2] 梁金涵,章文杰,林常青,等. 新型城镇化背景下中国建筑能耗总量分析与政策建议[J]. 制冷与空调, 2020, 34(2): 175-184. LIANG J H, ZHANG W J, LIN C Q, et al. Analysis of China's total building energy consumption and policy proposal under the background of new urbanization[J]. Refrigeration and Air Conditioning, 2020, 34(2): 175-184. [3] WANG T H. Research on influencing factors and prediction model of public building energy consumption in colleges and universities[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. [4] FAN C, XIAO F, MADSEN H, et al. Temporal knowledge discovery in big BAS data for building energy management[J]. Energy and Buildings, 2015, 109: 75-89. [5] FAN C, XIAO F, YAN C C. A framework for knowledge discovery in massive building automation data and its application in building diagnostics[J]. Automation in Construction, 2015, 50: 81-90. [6] MOR G, CIPRIANO J, MARTIRANO G, et al. A data-driven method for unsupervised electricity consumption characterisation at the district level and beyond[J]. Energy Reports, 2021, 7: 5667-5684. [7] 李梅香,彭惠旺,陈毅兴,等. 商场建筑运行能耗实测数据修复方法研究[J]. 建筑节能, 2021, 49(5): 37-45. LI M X, PENG H W, CHEN Y X, et al. A novel method of shopping mall energy consumption data restoration[J]. Journal of Building Energy Efficiency, 2021, 49(5): 37-45. [8] 周璇,崔少伟,周裕东. 办公建筑逐时能耗异常数据在线插补方法[J]. 建筑科学, 2018, 34(6): 82-90. ZHOU X, CUI S W, ZHOU Y D. Online interpolation methods for abnormal data of hourly energy consumption of office buildings[J]. Building Science, 2018, 34(6): 82-90. [9] SHAO M L, WANG X, BU Z, et al. Prediction of energy consumption in hotel buildings via support vector machines[J]. Sustainable Cities and Society, 2020, 57: 102-128. [10] 周优,陈义波,谭洪卫,等. 公共建筑电耗监测数据缺失及异常的预处理方法探究[J]. 建筑技术, 2018, 49(5): 469-472. ZHOU Y, CHEN Y B, TAN H W, et al. Study on preprocessing methods of missing and abnormal monitored electricity consumed in public buildings[J]. Architecture Technology, 2018, 49(5): 469-472. [11] 章挺飞, 罗恒, 刘杭. 基于LSTM网络的建筑能耗预测方法[J]. 苏州科技大学学报(自然科学版), 2020, 37(4): 78-84. ZHANG T F, LUO H, LIU H. Prediction of building energy consumption based on LSTM[J]. Journal of Suzhou University of Science and Technology(Natural Science), 2020, 37(4): 78-84. [12] KAPETANAKIS D S, MANGINA E, FINN D P. Input variable selection for thermal load predictive models of commercial buildings[J]. Energy and Buildings, 2017, 137: 13-26. [13] DING Y, ZHANG Q, YUAN T H, et al. Effect of input variables on cooling load prediction accuracy of an office building[J]. Applied Thermal Engineering, 2018, 128: 225-234. [14] BIAN H, ZHONG Y, SUN J, et al. Study on power consumption load forecast based on K-means clustering and FCM-BP model[J]. Energy Reports, 2020, 6:693-700. [15] ROSTAM M G, SADATINEJAD S J, MALEKIAN A. Precipitation forecasting by large-scale climate indices and machine learning techniques[J]. Journal of Arid Land, 2020, 12(5): 854-864. [16] 张雪嫣,黎晓东,孙洁香. 基于随机森林的烟草烘丝设备参数数据相关性分析研究[J]. 制造业自动化, 2019, 41(8): 145-148. ZHANG X Y, LI X D, SUN J X. Correlation analysis of parameter data of tobacco drying equipment based on random forest[J]. Manufacturing Automation, 2019, 41(8): 145-148. [17] YU M, YANG J Q, LU Y, et al. BP-ANN model coupled with particle swarm optimization for the efficient prediction of 2-chlorophenol removal in an electro-oxidation system[J]. International Journal of Environmental Research and Public Health, 2019, 16(14): 24-54. [18] HEFNY H A, AZAB S S. Chaotic particle swarm optimization[C] //2010 the 7th International Conference on Informatics and Systems(INFOS). Cairo, Egypt: IEEE, 2010: 1-8. [19] 李洪奇, 杨中国, 朱丽萍, 等. 基于数据集特征的KNN最优K值预测方法[J]. 计算机应用与软件, 2016, 33(6): 54-58. LI H Q, YANG Z G, ZHU L P, et al. Prediction method of optimal K value in KNN based on dataset features[J]. Computer Applications and Software, 2016, 33(6): 54-58. [20] 谢霖铨,赵楠,徐浩,等. 基于属性相关性的KNN近邻填补算法改进[J]. 江西理工大学学报, 2019, 40(1): 95-101. XIE L Q, ZHAO N, XU H, et al. KNN nearest neighbor filling algorithm based on attribute correlation[J]. Journal of Jiangxi University of Science and Technology, 2019, 40(1): 95-101. [21] MARTINO A, GHIGLIETTI A, IEVA F, et al. A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data[J]. Statistical Methods and Applications, 2019, 28: 301-322. |
[1] | Hao XIAO,Zhuhua LIAO,Yizhi LIU,Silin LIU,Jianxun LIU. Unmanned vehicle path planning based on deep Q learning in real environment [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 100-107. |
[2] | Zhuoyu XIAO,Pei HE,Guo CHEN,Yunbiao XU,Jie GUO. Design pattern classification mining with feature metrics constraints [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 48-58. |
[3] | Wenkai ZHANG,Ke YU,Xiaofei WU. Entity recommendation based on normalized similarity measure of meta graph in heterogeneous information network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 66-75. |
[4] | Chao FENG,Kunpeng XU,Lifei CHEN. LDA-based topic feature representation method for symbolic sequences [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 60-65. |
[5] | Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27,48. |
[6] | Qijie ZOU,Haoyu LI,Rubo ZHANG,Tengda PEI,Yan LIU. Survey of human-robot interaction control for autonomous driving [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 23-33. |
[7] | Zhongwei ZHANG,Hongyan MEI,Jun ZHOU,Huiping JIA. A rule extraction method based on multi-objective co-evolutionarygenetic algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 122-130. |
[8] | Xiaoyan GONGYE,Peiguang LIN,Weilong REN. Genetic algorithm based on Grefenstette coding and 2-opt optimized [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 19-26. |
[9] | HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22-28. |
[10] | WANG Huan, ZHOU Zhongmei. An over sampling algorithm based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 134-139. |
[11] | YANG Tianpeng, XU Kunpeng, CHEN Lifei. Coefficient of variation clustering algorithm for non-uniform data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 140-145. |
[12] | DU Xixi, LIU Huafeng, JING Liping. An additive co-clustering for recommendation of integrating social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 96-102. |
[13] | SHEN Ji, MA Zhiqiang, LI Tuya, ZHANG Li. A word extend LDA model for short text sentiment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 120-126. |
[14] | XIAO Zhuoyu, HE Pei, YU Bo, LI Yan, HU Zhentao. Design patterns detection based on FCA and CBR [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 22-28. |
[15] | LI Ming, LIU Wei, ZHANG Yanduo. Mulit-Agent dynamic task allocation based on improved contract net protocol [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 51-56. |
|