Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (3): 15-21.doi: 10.6040/j.issn.1672-3961.0.2020.249
Previous Articles Next Articles
YANG Xiuyuan, PENG Tao, YANG Liang*, LIN Hongfei
CLC Number:
[1] | MATTHEW E, MARK N, MOHIT I, et al. Deep contextualized word representations[C] // Proceedings of NAACL-HLT. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2227-2237. |
[2] | DEVLIN J, CHANG M, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[C] //Proceedings of NAACL-HLT. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4171-4186. |
[3] | YANG Z, DAI Z, YANG Y, et al. Xlnet: generalized autoregressive pretraining for language underst-anding[C] //Proceedings of NeurlPS. New York, USA: MIT Press, 2019: 5753-5763. |
[4] | JOSHI M, CHEN D, LIU Y, et al. Spanbert: improving pre-training by representing and predicting spans[J]. Transactions of the Association for Comp-utational Linguistics, 2019, 8(1): 64-77. |
[5] | WANG A, AMANPREET S, JULIAN M, et al. Glue: a multi-task benchmark and analysis platform for natural language understanding[C] //Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing(EMNLP). Brussels, Belgium: ACL, 2018: 353-355. |
[6] | DING M, ZHOU C, CHEN Q, et al. Cognitive graph for multi-hop reading comprehension at scale [C] //Proceedings of the 57th Conference of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 2694-2703. |
[7] | KOVALEVA O, ROMANOV A, ROGERS A, et al. Revealing the dark secrets of bert[C] //Proceedings of EMNLP-IJCNLP. Hong Kong, China: ACL, 2019: 4355-4365. |
[8] | RASTEGARI M, ORDONEZ V, REDMON J, et al. Xnor-net: imagenet classification using binary convolu-tional neural networks[C] //European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016: 525-542. |
[9] | HANG S, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural network [C] //Proceedings of Neural Information Processing Systems(NeurIPS). New York, USA: MIT Press, 2015: 1135-1143. |
[10] | LI J, ZHAO R, HUANG J, et al. Learning small-size DNN with output-distribution-based criteria[C] //Proceedings of Interspeech. Lyon, France: Interspeech, 2014:1910-1914. |
[11] | HUANG G, LIU Z, VAN D, et al. Densely connected convolutional networks[C] //Proceedings of the IEEE Conference on Computer vision and Pattern Recognition. Hawaii, USA: IEEE, 2017: 4700-4708. |
[12] | YIM J, JOO D, BAE J, et al. A gift from knowledge distillation: fast optimization, network minimization and transfer learning[C] //Proceedings of CVPR. Hawaii, USA: IEEE, 2017: 7130-7138. |
[13] | WOO S, PARK J, LEE J Y, et al. Cbam: con-volutional block attention module[C] //Proceedings of the European Conference on Computer Vision(ECCV). Munich, Germany: Springer, 2018: 3-19. |
[14] | FURLANELLO T, LIPTON Z, TSCHANNEN M, et al. Born-again neural networks[C] //Proceedings of ICML. Stockholm, Sweden: ACM, 2018: 1602-1611. |
[15] | YANG C, XIE L, SU C, et al. Snapshot distillation: teacher-student optimization in one generation[C] //Proceedings of CVPR. Long Beach, USA: IEEE, 2019: 2859-2868. |
[16] | XU T, LIU C. Data-distortion guided self-distillation for deep neural networks[C] //Proceedings of AAAI. Hawaii, USA: AAAI, 2019: 5565-5572. |
[17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of NIPS. New York, USA: MIT Press, 2017: 5998-6008. |
[18] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(NeurIPS). New York, USA: MIT Press, 2017: 770-778. |
[19] | QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 29(2): 1-26. |
[20] | BA L, CARUANA R. Do deep nets really need to be deep?[C] //Proceedings of Neural Information Processing Systems. New York, USA: MIT Press, 2013: 2654-2662. |
[21] | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C] //Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: AAAI, 2010: 249-256. |
[22] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE 2017: 1125-1134. |
[23] | SARIKAYA R, HINTON G, DEORAS A. Application of deep belief networks for natural language under-standing[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2014, 22(4): 778-784. |
[24] | LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning [C] //Proceedings of IJCAI. New York, USA: AAAI, 2016:168-175. |
[1] | Qingfa CHAI,Shoujing SUN,Jifu QIU,Ming CHEN,Zhen WEI,Wei CONG. Prediction method of power grid emergency supplies under meteorological disasters [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 76-83. |
[2] | LIANG Qixing, LI Bin, LI Zhi, ZHANG Hui, RONG Xuewen, FAN Yong. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 37-44. |
[3] | LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97. |
[4] | ZHOU Kaiqing, LI Hangcheng, MO Liping. Adaptive harmony search algorithm based on global optimization [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 47-56. |
[5] | Chunrui CHENG,Beixing MAO. Adaptive sliding mode synchronization of a class of nonlinear chaotic systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(5): 1-6. |
[6] | LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39. |
[7] | Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13. |
[8] | WANG Chunyan, DI Jinhong, MAO Beixing. Sliding mode synchronization of fractional-order Rucklidge systems with unknown parameters based on a new type of reaching law [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 40-45. |
[9] | Baocheng LIU,Yan PIAO,Xuemei SONG. Adaptive fusion target tracking based on joint detection [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 51-57. |
[10] | Wei YAN,Damin ZHANG,Huijuan ZHANG,Ziyun XI,Zhongyun CHEN. Improved bird swarm algorithms based on mixed decision making [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 34-43. |
[11] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[12] | Shengnan ZHANG,Lei WANG,Chunhong CHANG,Benli HAO. Image denoising based on 3D shearlet transform and BM4D [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 83-90. |
[13] | Xiaojie CAO,Xiaohua LI,Hui LIU. Construction expansion online for a class of nonaffine nonlinear large-scale systems [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 35-48. |
[14] | Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27,48. |
[15] | Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20. |
|