Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (1): 11-23.doi: 10.6040/j.issn.1672-3961.0.2020.050
WU Huihong1, QIAN Shuqu1*, LIU Yanmin2, XU Guofeng3, GUO Benhua1
CLC Number:
[1] ZAMAN M F, ELSAYED S M, RAY T, et al. Evolutionary algorithms for dynamic economic dispatch problems[J]. Power Systems: IEEE Transactions on, 2016, 31(2):1486-1495. [2] ZHANG Y, GONG D W, GENG N. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects[J]. Applied Soft Computing, 2014, 18:248-260. [3] LI X B. Study of multi-objective optimization and multi-attribute decision-making for dynamic economic emission dispatch[J]. Electric Power Components and Systems, 2009, 37(10):1133-1148. [4] LI Z G, WU W C, ZHANG B M, et al. Dynamic economic dispatch using lagrangian relaxation with multiplier updates based on a Quasi-Newton method[J]. IEEE Transactions on Power Systems, 2013, 28(4):4516-4527. [5] JEBARAJ L, VENKATESAN C, SOUBACHE I, et al. Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77(9):1206-1220. [6] LI Z Y, ZOU D X, KONG Z. A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss[J]. Engineering Applications of Artificial Intelligence, 2019, 84:18-40. [7] BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power and Energy Systems, 2008, 30(2):140-149. [8] QU B Y, ZHU Y S, JIAO Y C, et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems[J]. Swarm and Evolutionary Computation, 2018, 38:1-11. [9] ELAIW A M, XIA X, SHEHATA A M. Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects[J]. Electrical Power System Research, 2013, 103:192-200. [10] GILL P E, SAUNDERS M. An SQP algorithm for large-scale constrained optimization[J]. Siam Review, 2005, 47(1):99-131. [11] ZHANG H F, YUE D, XIE X P, et al. Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch[J]. Applied Soft Computing, 2015, 34:312-323. [12] ROY P K, BHUI S. A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch[J]. International Transactions on Electrical Energy Systems, 2015, 26(1):49-78. [13] MASON K, DUGGAN J, HOWLEY E. A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch[J]. International Journal of Electrical Power & Energy Systems, 2018, 100:201-221. [14] SHEN X, ZOU D X, DUAN N, et al. An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch[J]. Energy, 2019, 186:1-28. [15] ZHU Y S, QIAO B H,DONG Y, et al. Multiobjective dynamic economic emission dispatch using evolutionary algorithm based on decomposition[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(4):1-11. [16] 闫李, 李超, 柴旭朝, 等. 基于多学习多目标鸽群优化的动态环境经济调度[J]. 郑州大学学报(工学版), 2019, 40(4):8-14. YAN Li, LI Chao, CHAI Xuzhao, et al. Dynamic economic emission dispatch based on multiple learning multiobjective pigeon inspired optimization[J]. Journal of Zhengzhou University(Engineering Science), 2019, 40(4):8-14. [17] 张大, 彭春华, 孙惠娟. 大规模风电机组并网的多目标动态环境经济调度[J]. 华东交通大学学报, 2019, 36(5):129-135. ZHANG Da, PENG Chunhua, SUN Huijuan. Multiobjective dynamic economic emission dispatch of large-scale wind power integration[J]. Journal of East China Jiaotong University, 2019, 36(5):129-135. [18] STORN R, PRICE K. Differential Evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of Global Optimization, 1995, 23(1):119-123. [19] SARKER R, ABBASS H A. Differential evolution for solving multi-objective optimization problems[J]. ASIA Pacific Journal of Operational Research, 2004, 21(2):225-240. [20] 钱淑渠,徐国峰,武慧虹, 等. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4):1-9. QIAN Shuqu, XU Guofeng, WU Huihong, et al. Immune clonal evolutionary algorithm of dynamic economic dispatch considering gas pollution emission[J]. Journal of Shandong University(Engineering Science), 2018, 48(4): 1-9. |
[1] | Runjia SUN,Hainan ZHU,Yutian LIU. Transmission network reconfiguration strategy based on preference multiobjective optimization and genetic algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 17-23. |
[2] | QIAN Shuqu, WU Huihong, XU Guofeng, JIN Jingliang. Immune clonal evolutionary algorithm of dynamic economic dispatch considering gas pollution emission [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 1-9. |
[3] | ZHANG Shuangsheng, QIANG Jing, LIU Xikun, LIU Hanhu, ZHU Xueqiang. Inverse problems of pollution source identification based on Bayesian-DE [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 131-136. |
[4] | DENG Guanlong, YANG Hongyong, ZHANG Shuning, GU Xingsheng. Multi-objective scheduling in no-wait flow shop using a hybridized differential evolution algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 21-28. |
[5] | YANG Longhao, FU Yanggeng, GONG Xiaoting. Parallel differential evolution algorithm for parameter learning of belief rule base [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 30-36. |
[6] | LIANG Xingjian, ZHAN Zhihui. Improved genetic algorithm based on the dual-mode mutation strategy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 1-7. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 235
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1063
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|