Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (6): 101-111.doi: 10.6040/j.issn.1672-3961.0.2020.128

• Electrical Engineering • Previous Articles     Next Articles

Electric vehicle virtual energy storage available capacity modeling

Bei LI1(),Song ZHAO1,2,Zhijia XIE1,Meng NIU1   

  1. 1. China Electric Power Research Institute, Beijing 100192, China
    2. North China Electric Power University College of Control Science and Engineering, Beijing 102206, China
  • Received:2020-04-20 Online:2020-12-20 Published:2020-12-15

Abstract:

In order to efficiently implement the virtual energy storage dispatch of electric vehicles in a wide area, the article focused on the types of electric vehicles that respond to electric vehicle virtual energy storage (EVVES) services by clustering, combined with the use habits of all kinds of electric vehicle owners (such as daily driving mileage, charging and discharging rules, expected standby travel electricity, etc.), the impact of market on EVVES responsiveness, redundant design of available energy storage capacity and other factors, a virtual energy storage (VES) capacity estimation model was established. Combined with the technical requirements of power system for energy storage to participate in system services, such as emergency power support, smooth renewable energy output, UPS/EPS, etc., the matching basis of supply and demand was proposed. Based on Monte Carlo simulation method, the practicability of the model to estimate the available capacity of response VES service in different time periods was verified, which layed the foundation for the operation practice of EVVES in future.

Key words: electric vehicle, virtual energy storage, available capacity modeling, Monte Carlo simulation method, clustering analysis

CLC Number: 

  • TM85

Fig.1

State distribution of electric vehicles"

Table 1

Electric vehicle state distribution in different time periods"

时段 电动汽车状态
A类 B类
t1 M1 M21
t2 M21 M1
t3 M1 M21
t4 M21 M1
t5 M1 M21
t6 M21 M21
t0 M23 M23

Fig.2

Electric vehicles participate in virtual energy storage response characteristics"

Fig.3

Probability density curve of EV daily travel distance"

Fig.4

Fitted parking time probability density curve"

Fig.5

Flow chart of electric vehicle participating in virtual energy storage available capacity calculation"

Table 2

Technical requirements for EVVES to participate in different services"

需求分类 应用场景 功率规模/万kW 持续时间 响应时间
小时级 提供输变电设备容量扩充 1~30 1~6 h < 15 min
实现峰谷价差套利 <0.1 1~4 h < 15 min
提供负荷侧需求侧响应管理 <5 2~6 h < 15 min
提供分布式电源出力波动平滑服务 0.1~5 1~4 h <15 s
分钟级 提供短时备用容量支援服务 5~100 15 min~1 h < 1 min
提供二次调频服务 1~50 1~15 min 2.5~15 s
秒级 提供紧急功率支撑服务 10~100 1~30 s 1 ms~1 s

Table 3

Electric vehicle battery related data"

车辆类型 额定容量/(kWh) 电动汽车效率/% 百公里能耗/(kWh) 最大放电功率/kW
A类 A1 82 95 20.5 20
A2 95 92 17.5 23
A3 79 89 23.5 17
B类 B1 84 95 33.6 23.5
B2 88 90 36 16.5
B3 80 88 32.2 20

Table 4

Number of electric vehicles that can participate in virtual energy storage"

时间 NAves NBves
t0 26 0
t1 0 1
t2 25 1
t3 2 10
t4 324 5
t5 22 49
t6 239 50

Table 5

Available energy of EVVES in different periods kWh"

时间 A类 B类 总和
t0 1 513 0 1 513
t1 0 52 52
t2 1 489 49 1 538
t3 126 457 583
t4 19 549 254 19 803
t5 1 252 2 580 3 832
t6 14 024 2 562 16 586

Table 6

EVVES power in different periods kW"

时间 A类 B类 总和
t0 520 0 520
t1 0 20 20
t2 500 20 520
t3 40 200 240
t4 6 480 100 6580
t5 440 980 1 420
t6 4 780 1 000 5 780

Table 7

Distribution of EV number in different duration sets"

时间 TL1 TL2 TL3
t0 26 26 25
t1 1 1 1
t2 26 26 26
t3 12 12 11
t4 327 327 323
t5 70 70 68
t6 286 286 279

Table 8

Energy of EVVES available in different duration sets kWh"

时间 TL1 TL2 TL3
t0 374 374 369
t1 16 16 16
t2 360 360 360
t3 185 185 174
t4 4 692 4 692 4 642
t5 1 050 1 050 1 029
t6 4 138 4 138 4 120

Table 9

Power of EVVES available in different duration sets kW"

时间 TL1 TL2 TL3
t0 520 520 500
t1 20 20 20
t2 520 520 520
t3 240 240 220
t4 6 540 6 540 6 460
t5 1 400 1 400 1 360
t6 5 720 5 720 5 580

Fig.6

Energy of EVVES available in different duration sets"

Fig.7

Power of EVVES available in different duration sets"

1 肖湘宁, 陈征, 刘念. 可再生能源与电动汽车充放电设施在微电网中的集成模式与关键问题[J]. 电工技术学报, 2013, 28 (2): 1- 14.
doi: 10.3969/j.issn.1000-6753.2013.02.001
XIAO Xiangning , CHEN Zheng , LIU Nian . Integrated mode and key issues of renewable energy sources and electric vehicles' charging and discharging facilities in microgrid[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 1- 14.
doi: 10.3969/j.issn.1000-6753.2013.02.001
2 肖浩, 裴玮, 孔力. 含大规模电动汽车接入的主动配电网多目标优化调度方法[J]. 电工技术学报, 2017, 32 (增刊2): 179- 189.
XIAO Hao , PEI Wei , KONG Li . Multi-objective optimization scheduling method for active distribution network with large scale electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, (Suppl.2): 178- 189.
3 孙波, 廖强强, 谢品杰, 等. 车电互联削峰填谷的经济成本效益分析[J]. 电网技术, 2012, 36 (10): 30- 34.
SUN Bo , LIAO Qiangqiang , XIE Pinjie , et al. A cost-benefit analysis model of vehicle-to-grid for peak shaving[J]. Power System Technology, 2012, 36 (10): 30- 34.
4 茆美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35 (14): 30- 35.
MAO Meiqin , SUN Shujuan , SU Jianhui . Economic analysis of wind/solar/storage microgrid including electric vehicles[J]. Automation of Electric Power Systems, 2011, 35 (14): 30- 35.
5 包广清, 徐欣. 电动汽车与风电机组协同作用的微电网经济调度[J]. 太阳能学报, 2015, 36 (9): 2300- 2306.
doi: 10.3969/j.issn.0254-0096.2015.09.039
BAO Guangqing , XU Xin . Economic dispatch of micro-grids based on coordination between electric vehicle and wind power[J]. Acta Energiae Solaris Sinica, 2015, 36 (9): 2300- 2306.
doi: 10.3969/j.issn.0254-0096.2015.09.039
6 于大洋, 宋曙光, 张波, 等. 区域电网电动汽车充电与风电协同调度的分析[J]. 电力系统自动化, 2011, 35 (14): 24- 29.
YU Dayang , SONG Shuguang , ZHANG Bo , et al. Synergistic dispatch of pevs charging and wind power in chinese reginal power grids[J]. Automation of Electric Power Systems, 2011, 35 (14): 24- 29.
7 姚伟锋, 赵俊华, 文福拴, 等. 集中充电模式下的电动汽车调频策略[J]. 电力系统自动化, 2014, 38 (9): 69- 76.
YAO Weifeng , ZHAO Junhua , WEN Fushuan , et al. Frequency regulation strategy for electric vehicles with centralized charging[J]. Automation of Electric Power Systems, 2014, 38 (9): 69- 76.
8 SABER A Y, VENAYAGAMOORTHY G K. Unit commitment with vehicle-to-grid using particle swarm optimization[C]. IEEE Bucharest Power Tech Conference, Bucharest, Romania: IEEE, 2009.
9 HANNES K , ANDREW C . Modular strategy for aggreg-ator control and data exchange in large scale vehicle-to-grid (V2G) applications[J]. Energy Procedia, 2018, 151, 7- 11.
doi: 10.1016/j.egypro.2018.09.019
10 薛飞, 雷宪章, 张野飚, 等. 电动汽车与智能电网从V2G到B2G的全新结合模式[J]. 电网技术, 2012, 36 (2): 29- 34.
XUE Fei , LEI Xianzhang , ZHANG Yebiao , et al. A brand-new approach of connecting electrical vehicles with smart grid from vehicles-to-grid model[J]. Power System Technology, 2012, 36 (2): 29- 34.
11 李虎成, 汤奕, 於益军.大规模电动汽车充放电行为聚合效应对电网功率平衡影响的研究[C]//国电机工程学会年会.贵州: 国电机工程学会, 2011: 20-27.
LI Hucheng, TANG Yi, YU Yijun. Research about the influence on load power balance for the charging and discharging behaviors' aggregation effect of large-scale electric vehicles[C]// Proceedings of the Annual Meeting of the Chinese Society of Electrical Engineering. Guizhou, China: Annual Meeting of the Chinese Society of Electrical Engineering, 2011: 20-27.
12 翁国庆, 张有兵, 戚军, 等. 多类型电动汽车电池集群参与微网储能的V2G可用容量评估[J]. 电工技术学报, 2014, 29 (8): 36- 45.
doi: 10.3969/j.issn.1000-6753.2014.08.005
WENG Guoqing , ZHANG Youbing , QI Jun , et al. Evaluation for V2G available capacity of battery groups of electric vehicles as energy storage elements in mircogird[J]. Transactions of China Electrotechnical Society, 2014, 29 (8): 36- 45.
doi: 10.3969/j.issn.1000-6753.2014.08.005
13 王贵斌, 赵俊华, 文福拴, 等. 配电系统中电动汽车与可再生能源的随机协同调度[J]. 电力系统自动化, 2012, 36 (19): 22- 28.
WANG Guibin , ZHAO Junhua , WEN Fushuan , et al. Stochastic optimization dispatch of plug-in hybird electric vehicles in coordination with renewable generation in distribution systems[J]. Automation of Electric Power Systems, 2012, 36 (19): 22- 28.
14 葛少云, 王龙, 刘洪, 等. 计及电动汽车入网的峰谷电价时段优化模型研究[J]. 电网技术, 2013, 37 (8): 2316- 2321.
GE Shaoyun , WANG Long , LIU Hong , et al. An optimization model of peak-valley price time-interval considering vehicle-to-grid[J]. Power System Technology, 2013, 37 (8): 2316- 2321.
15 KAURK , DUA A , JINDAL A , et al. A novel resource reservation scheme for mobile phevs in V2G environment using game theoretical approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (12): 5653- 5666.
doi: 10.1109/TVT.2015.2482462
16 DRUDEL , JUNIOR L C P , RICARDO Rüther . Photovoltaics (pv) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in brazil in a smart grid environment[J]. Renewable Energy, 2014, 68 (4): 443- 451.
17 TABATABAEES , MORTAZAVI S S , NIKNAM T . Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources[J]. Energy, 2017, 121, 480- 490.
doi: 10.1016/j.energy.2016.12.115
18 WANGM , MU Y , JIA H , et al. Active power regulation for large-scale wind farms through an efficient power plant model of electric vehicles[J]. Applied Energy, 2016, 185, 1673- 1683.
19 MISHRA S , SAHOO S , PULLAGURAM D R . A systematic state of charge based V2G charging framework for frequency response[J]. Ifac Papersonline, 2015, 48 (30): 31- 36.
doi: 10.1016/j.ifacol.2015.12.349
20 KAM M V D , SARK W V . Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid: a case study[J]. Applied Energy, 2015, 152, 20- 30.
doi: 10.1016/j.apenergy.2015.04.092
21 项顶, 宋永华, 胡泽春, 等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报, 2013, 33 (31): 15- 25.
XIANG Ding , SONG Yonghua , HU Zechun , et al. Research on optimal time of use price for electric vehicle participating V2G[J]. Proceedings of the CSEE, 2013, 33 (31): 15- 25.
22 刘都利, 周任军, 孙洪. 考虑电动汽车分类的V2G消纳风电优化策略[J]. 电测与仪表, 2018, 55 (9): 69- 76.
doi: 10.3969/j.issn.1001-1390.2018.09.013
LIU Duli , ZHOU Renjun , SUN Hong . Optimization strategy of V2G for wind power accommodation considering electric vehicle classification[J]. Electrical Measurement & Instrumentation, 2018, 55 (9): 69- 76.
doi: 10.3969/j.issn.1001-1390.2018.09.013
23 彭智乐.新型配电网中风光电动汽车协同调度研究[D].广州: 广东工业大学, 2016.
PENG Zhile. Synergistic dispatch of new type distribution network with wind-PV and PEVs[D]. Guangzhou: Guangdong University of Technology, 2016.
24 刘晓飞, 崔淑梅, 李锦瑭, 等. 停车场电动汽车用户侧最优V2G控制策略研究[J]. 电气工程学报, 2015, 10 (10): 44- 51.
LIU Xiaofei , CUI Shumei , LI Jintang , et al. Research on electric vehicle user-side optimization V2G control strategy in parkinglot[J]. Journal of Electrical Engineering, 2015, 10 (10): 44- 51.
25 王冉, 王丹, 贾宏杰, 等. 一种平抑微网联络线功率波动的电池及虚拟储能协调控制策略[J]. 中国电机工程学报, 2015, 35 (20): 5124- 5134.
WANG Ran , WANG Dan , JIA Hongjie , et al. Acoordination control strategy of battery and virtual energy storage to smooth the microgrid tie line power fluctuations[J]. Proceedings of the CSEE, 2015, 35 (20): 5124- 5134.
26 Zhang J , Liu C , Yuan R , et al. Design scheme for fast charging station for electric vehicles with distributed photovoltaic power generation[J]. Global Energy Interconnection, 2019, 2 (2): 150- 159.
doi: 10.1016/j.gloei.2019.07.003
27 王博.考虑V2G用户响应度的峰谷电价建模与优化[D].北京: 华北电力大学, 2016.
WANG Bo. Modeling and optimization of peak-valley price considering V2G user reactivity[D]. Beijing: North China Electric Power University, 2016.
28 刘坚, 金亨美, 唐莉, 等.电动汽车储能市场及激励机制研究[R].北京: 自然资源保护协会, 2018: 20-21.
LIU Jian, JIN Hengmei, TANG Li, et al. Research on electric vehicle energy storage market and incentive mechanism[R]. Beijing: NRDC, 2018: 20-21.
29 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34 (11): 126- 130.
TIAN Liting , SHI Shuanglong , JIA Zhuo . A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34 (11): 126- 130.
30 刘坚. 电动汽车储能技术应用潜力及功能定位研究[J]. 全球能源互联网, 2020, 3 (1): 44- 50.
LIU Jian . An analysis on the application potential and position of electric vehicle energy storage[J]. Global Energy Interconnection, 2020, 3 (1): 44- 50.
[1] Shizhan SONG,Haoyu CHEN,Jian ZHANG,Kun WANG,Qingshui HAO. Voltage control method of urban distribution network considering street light charging pile access [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 104-110.
[2] Youming TANG,Kun DONG,Yuanwei ZHANG. Design and verification of power system for ECVT hybrid electric city bus [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 98-106.
[3] LI Jianxiang, CHE Changming, HAN Yuankai, CHEN Fang, ZHANG Chenglin. An overview of emergency charging rescue scheme for electric vehicle on highway [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 121-127.
[4] XU Wei, JI Xiaotong, LIU Haibo, HAN Yuankai, CHEN Fang, ZHANG Chenglin. Location and resource allocation of emergency charging station for expressway electric vehicle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 115-120.
[5] CHE Changming, ZHANG Huadong, LI Jianxiang, YUAN Hong, LIU Haibo. Optimization dispatch control strategy for charging load of large-scale electric vehicle on demand side [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 108-114.
[6] CHEN Yucheng, SUN Qiang, MIAO Qiang, BAI Shuzhan, LI Guoxiang. Design and development of test bench for hybrid electric vehicle powertrain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 119-124.
[7] FU Xiaoling, ZHANG Qi, ZHANG Chenghui. Sharing application mechanism of large-scale instrument and equipment in scientific research and teaching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 83-88.
[8] ZHANG Yun-xia, CUI Xiao-song, ZOU Li*. A clustering method based on 18-element linguistic-valued fuzzy similar matrix [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 34-40.
[9] ZHANG Guo-liang, LI Bo*, WANG Yun-fa. Location and algorithm of multi-level electric vehicle charging stations [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 136-142.
[10] LIU Yang1, CHENG Yong1*, JI Shao-bo1, HUANG Wan-you1, LI Chuang2, ZHANG Xiao-wen2. Wireless monitoring platform development for electric vehicles based on GPRS and CAN bus [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 109-114.
[11] DONG Feng-juan, ZOU Hua-bin*, LU Wei-jie, DU Ai-qin. The dual index grade sequence pattern recognition method for analyzing infrared fingerprint   spectra of extracts with
chloroform of Shiquan Dabu Pills
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(6): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[3] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[4] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[5] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[6] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[7] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[8] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[9] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[10] ZHANG Ying,LANG Yongmei,ZHAO Yuxiao,ZHANG Jianda,QIAO Peng,LI Shanping . Research on technique of aerobic granular sludge cultivationby seeding EGSB anaerobic granular sludge[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 56 -59 .