Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (4): 52-69.doi: 10.6040/j.issn.1672-3961.0.2020.149
• Civil Engineering • Previous Articles Next Articles
Jianqing WU(),Xiuguang SONG*()
CLC Number:
1 | 陈宇, 韦万峰, 周胜波, 等. 基于流变性评价沥青自愈合性能研究[J]. 新型建筑材料, 2020, 47 (2): 27- 31. |
CHEN Yu , WEI Wanfeng , ZHOU Shengbo , et al. Research on self-healing performance evaluation of asphalt based on rheology[J]. New Building Materials, 2020, 47 (2): 27- 31. | |
2 | 徐亚, 吴丹. 沥青混合料自愈合性能研究综述[J]. 科技创新与应用, 2020, (10): 62- 63. |
XU Ya , WU Dan . A review of research on self-healing properties of asphalt mixtures[J]. Science and Technology Innovation and Application, 2020, (10): 62- 63. | |
3 | GARCIA A , AUSTIN C J , JELFS J . Mechanical properties of asphalt mixture containing sunflower oil capsules[J]. Journal of Cleaner Production, 2016, 118 (1): 124- 132. |
4 | TABAKOVIC' A , POST W , CANTERO D , et al. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres[J]. Smart Materials and Structures, 2016, 25 (8): 1- 12. |
5 |
AGZENAI Y , POZUELO J , SANZ J , et al. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies[J]. Recent Pat Nanotechnol, 2015, 9 (1): 43- 50.
doi: 10.2174/1872208309666141205125017 |
6 | GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. Preparation of capsules containing rejuvenators for their use in asphalt concrete[J]. Journal of Hazardous Materials, 2010, 184 (1): 603- 611. |
7 | GARCIA A , JELFS J , AUSTIN C J . Internal asphalt mixture rejuvenation using capsules[J]. Construction and Building Materials, 2015, 101 (1): 309- 316. |
8 | MICAELO R , AL-MANSOORI T , GARCIA A . Study of the mechanical properties and self-healing ability of asphalt mixture containing calcium-alginate capsules[J]. Construction and Building Materials, 2016, 123 (1): 734- 744. |
9 | SU J , SCHLANGEN E , QIU J . Design and construction of microcapsules containing rejuvenator for asphalt[J]. Powder Technology, 2013, 235 (1): 563- 571. |
10 | SU J , QIU J , SCHLANGEN E , et al. Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: in situ rejuvenation for aged bitumen[J]. Construction and Building Materials, 2015, 74 (1): 83- 92. |
11 | SUN D , HU J , ZHU X . Size optimization and self-healing evaluation of microcapsules in asphalt binder[J]. Colloid & Polymer Science, 2015, 293 (2): 3505- 3516. |
12 | LI R , ZHOU T , PEI J . Design, preparation and properties of microcapsules containing rejuvenator for asphalt[J]. Construction and Building Materials, 2015, 99 (1): 143- 149. |
13 | 肖艺成.路用自修复材料的制备及性能研究[D].西安:长安大学, 2014. |
XIAO Yicheng. Preparation and properties of self-healing materials for road use[D]. Xi'an: Changan Univer-sity, 2014. | |
14 |
LIU Q , GARCÍA Á , SCHLANGEN E , et al. Induction healing of asphalt mastic and porous asphalt concrete[J]. Construction and Building Materials, 2011, 25 (9): 3746- 3752.
doi: 10.1016/j.conbuildmat.2011.04.016 |
15 |
LIU Q , SCHLANGEN E , GARCÍA Á , et al. Induction heating of electrically conductive porous asphalt concrete[J]. Construction and Building Materials, 2010, 24 (7): 1207- 1213.
doi: 10.1016/j.conbuildmat.2009.12.019 |
16 | DAI Q , WANG Z , HASAN M R M . Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests[J]. Construction and Building Materials, 2013, 49 (12): 729- 737. |
17 | GARCÍA A , NORAMBUENA-CONTRERAS J , PARTL M N . A parametric study on the influence of steel wool fibers in dense asphalt concrete[J]. Materials & Structures, 2014, 47 (9): 1559- 1571. |
18 | GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. A simple model to define induction heating in asphalt mastic[J]. Construction and Building Materials, 2012, 31 (1): 38- 46. |
19 | GARCÍA Á , SCHLANGEN E , VAN DE VEN M , et al. Optimization of composition and mixing process of a self-healing porous asphalt[J]. Construction and Building Materials, 2012, 30 (1): 59- 65. |
20 | GARCÍA A , NORAMBUENA-CONTRERAS J , PARTL M N , et al. Uniformity and mechanical properties of dense asphalt concrete with steel wool fibers[J]. Construction and Building Materials, 2013, 43 (1): 107- 117. |
21 | LIU Q , WU S , SCHLANGEN E . Induction heating of asphalt mastic for crack control[J]. Construction and Building Materials, 2013, 41 (1): 345- 351. |
22 | YANG X , DAI Q , YOU Z , et al. Integrated experimental-numerical approach for etimating asphalt mixture induction healing level through discrete element modeling of a single-edge notched beam test[J]. Journal of Materials in Civil Engineering, 2015, 27 (9): 1- 9. |
23 | GÓMEZ-MEIJIDE B , AJAM H , LASTRA-GONZÁLEZ P , et al. Effect of air voids content on asphalt self-healing via induction and infrared heating[J]. Construction and Building Materials, 2016, 126 (1): 957- 966. |
24 | PAMULAPATI Y , ELSEIFI M A , COOPER S B , et al. Evaluation of self-healing of asphalt concrete through induction heating and metallic fibers[J]. Construction and Building Materials, 2017, 146 (1): 66- 75. |
25 | 何亮, 李冠男, 熊汉江, 等. 钢砂SBS改性沥青混凝土裂纹的感应加热自修复性能[J]. 交通运输工程学报, 2018, 18 (3): 11- 18. |
HE Liang , LI Guannan , XIONG Hanjiang , et al. Self-healing properties of steel sand SBS modified asphalt concrete cracks by induction heating[J]. Journal of Transportation Engineering, 2018, 18 (3): 11- 18. | |
26 | 叶勇, 李斌, 刘全涛. 沥青混凝土电磁感应加热梯度愈合行为研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42 (1): 26- 30. |
YE Yong , LI Bin , LIU Quantao . Study on the gradient healing behavior of electromagnetic induction heating of asphalt concrete[J]. Journal of Wuhan University of Technology(Transportation Science and Engineering Edition), 2018, 42 (1): 26- 30. | |
27 |
MAALEJ M , HASHIDA T , LI V C . Effect of fiber volume fraction on the off-crack-plane fracture energy in strain -hardening engineered cementitious composites[J]. Journal of the American Ceramic Society, 1995, 78 (12): 3369- 3375.
doi: 10.1111/j.1151-2916.1995.tb07979.x |
28 | YANG E H , YANG Y Z , LI V C . Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. Aci Materials Journal, 2007, 104 (6): 620- 628. |
29 | SISOMPHON K , COPUROGLU O , KOENDERS E A . Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials[J]. Construction and Building Materials, 2013, 42 (1): 217- 224. |
30 |
SISOMPHON K , COPUROGLU O , KOENDERS E A . Self-healing of surface cracks in mortars with expansive additive and crystalline additive[J]. Cement and Concrete Composites, 2012, 34 (4): 566- 574.
doi: 10.1016/j.cemconcomp.2012.01.005 |
31 | SISOMPHON K , COPUROGLU O , FRAAIJ A . Application of encapsulated lightweight aggregate impregnated with sodium monof luorophosphate as a self-healing agent in blast furnace slag mortar[J]. Heron, 2011, 56 (1): 13- 32. |
32 | JONKERS H , THIJSSEN A , MUYZER G , et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36 (2): 230- 235. |
33 |
WIKTOR V , JONKERS H . Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33 (7): 763- 770.
doi: 10.1016/j.cemconcomp.2011.03.012 |
34 | 王瑞兴, 钱春香, 王剑云. 微生物沉积碳酸钙研究[J]. 东南大学学报(自然科学版), 2005, 35 (增刊1): 191- 195. |
WANG Ruixing , QIAN Chunxiang , WANG Jianyun . Research on microbial deposition of calcium carbonate[J]. Journal of Southeast University(Natural Science Edition), 2005, 35 (Suppl.1): 191- 195. | |
35 | WANG J , SOENS H , VERSTRAETE W . Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56 (2): 139- 152. |
36 |
SOROUSHIAN P , OSTOWARI K , NOSSONI A , et al. Repair and strengthening of concrete structures through application of corrective posttensioning forces with shape memory alloys[J]. Transportation Research Record, 2001, 1770 (1): 20- 26.
doi: 10.3141/1770-03 |
37 | 匡亚川, 欧进萍. 形状记忆合金智能混凝土梁变形特性的研究[J]. 中国铁道科学, 2008, (4): 41- 46. |
KUANG Yachuan , OU Jinping . Research on deformation characteristics of shape memory alloy intelligent concrete beam[J]. China Railway Science, 2008, (4): 41- 46. | |
38 | 崔迪, 李宏男, 宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27 (2): 117- 123. |
CUI Di , LI Hongnan , SONG Gangbing . Experimental study on mechanical properties of shape memory alloy concrete beams[J]. Engineering Mechanics, 2010, 27 (2): 117- 123. | |
39 | 孙丽, 陈晓丹, 高倩倩. 配置预应力形状记忆合金丝的混凝土梁修复性能试验研究[J]. 建筑结构学报, 2015, 36 (增刊2): 265- 269. |
SUN Li , CHEN Xiaodan , GAO Qianqian . Experimental study on repair performance of concrete beams equipped with prestressed shape memory alloy wires[J]. Journal of Building Structures, 2015, 36 (Suppl.2): 265- 269. | |
40 | 王兆芃, 杜顺禹, 杨静宁. SMA对混凝土裂纹修复性能的数值分析[J]. 甘肃科学学报, 2018, 30 (3): 111- 116. |
WANG Zhaopeng , DU Shunyu , YANG Jingning . Numerical analysis of concrete crack repair performance with SMA[J]. Journal of Gansu Sciences, 2018, 30 (3): 111- 116. | |
41 | HOC T, CHUNGD D L, 甘永学. 用碳纤维增强锡基复合材料包覆超导体[J]. 复合材料学报, 1989, (3): 71. |
HO C T , CHUNG D , GAN Yongxue . Superconductor coated with carbon fiber reinforced tin matrix composites[J]. Journal of Composites, 1989, (3): 71. | |
42 | 孙明清, 李卓球, 沈大荣. 炭纤维水泥基复合材料的Seebeck效应[J]. 材料研究学报, 1998, (1): 111- 112. |
SUN Mingqing , LI Zhuoqiu , SHEN Darong . Seebeck effect of carbon fiber cement-based composites[J]. Journal of Materials Research, 1998, (1): 111- 112. | |
43 | 邓友生, 吴鹏, 李卓球, 等. 水泥基碳纤维智能层检测混凝土梁的试验研究[J]. 科学技术与工程, 2017, 17 (6): 232- 237. |
DENG Yousheng , WU Peng , LI Zhuoqiu , et al. Experimental study on the detection of concrete beams with a cement-based carbon fiber intelligent layer[J]. Science Technology and Engineering, 2017, 17 (6): 232- 237. | |
44 | 郑华升, 朱四荣, 李卓球. 碳纤维增强塑料(CFRP)力阻效应的研究评述[J]. 材料科学与工程学报, 2017, 35 (6): 1009- 1013. |
ZHENG Huasheng , ZHU Sirong , LI Zhuoqiu . Review of the research on the force resistance effect of carbon fiber reinforced plastics(CFRP)[J]. Journal of Materials Science and Engineering, 2017, 35 (6): 1009- 1013. | |
45 | SELVARAJU R K. Characterization of solar roadways via computational and experimental investigations[D]. London, Canada: The University of Western Ontario, 2012. |
46 | NORTHMORE A B, TIGHE S. Developing innovative roads using solar technologies[C]// Proceedings of the 2012 Annual Conference of the Canadian Society for Civil Engineering. Fredericton, Canda: [s.n.], 2012: 1348-1355. |
47 | NORTHMORE A, TIGHE S. Innovative pavement design: are solar roads feasible?[C]// Proceedings of the 2012 Conference and Exhibition of the Transportation Association of Canada-Transportation: Innovations and Opportunities. Fredericton, Canda: [s.n.], 2012. |
48 | 蔡良.太阳能空心板块路面结构模型试验研究[D].长沙:长沙理工大学, 2014. |
CAI Liang. Model test research on solar hollow plate pavement structure[D]. Changsha: Changsha University of Science and Technology, 2014. | |
49 | 张铖坚.基于导光混凝土的太阳能路面空心板块模型制备及性能研究[D].长沙:长沙理工大学, 2017. |
ZHANG Chengjian. Preparation and performance research of solar pavement hollow slab model based on light guide concrete[D]. Changsha: Changsha University of Science and Technology, 2017. | |
50 | 李子豪.基于透明树脂混凝土的太阳能路面材料与模型制备及性能研究[D].长沙:长沙理工大学, 2018. |
LI Zihao. Solar pavement material and model preparation and performance research based on transparent resin concrete[D]. Changsha: Changsha University of Science and Technology, 2018. | |
51 | MA T , YANG H , GU W , et al. Development of walkable photovoltaic floor tiles used for pavement[J]. Energy Conversion & Management, 2019, 183 (3): 764- 771. |
52 | 陈小刚. 降噪透水沥青路面在城市道路中的应用研究[J]. 江西建材, 2017, (9): 216- 217. |
CHEN Xiaogang . Application research on noise reduction permeable asphalt pavement in urban roads[J]. Jiangxi Building Materials, 2017, (9): 216- 217. | |
53 | 陈德, 韩森, 苏谦, 等. 基于抗滑降噪性能的沥青路面表面构造评价指标[J]. 浙江大学学报(工学版), 2017, 51 (5): 896- 903. |
CHEN De , HAN Sen , SU Qian , et al. Evaluation index of asphalt pavement surface structure based on anti-slip and noise reduction performance[J]. Journal of Zhejiang University(Engineering Science), 2017, 51 (5): 896- 903. | |
54 | 张可强. 排水降噪路面AR—OGFC在市政道路中的应用[J]. 交通标准化, 2014, 42 (11): 48- 50. |
ZHANG Keqiang . Application of drainage and noise reduction road surface AR-OGFC in municipal roads[J]. Transportation Standardization, 2014, 42 (11): 48- 50. | |
55 | 和绍君. 基于道路压电能量采集技术的突起路标的可行性研究[J]. 西部交通科技, 2019, (4): 164- 166. |
HE Shaojun . Feasibility study of protruding road signs based on road piezoelectric energy harvesting technology[J]. West Transportation Technology, 2019, (4): 164- 166. | |
56 | 徐啸尘, 曹东伟, 杨海露, 等. 压电技术在路面能量收集中的应用[J]. 公路交通科技(应用技术版), 2017, 13 (1): 73- 76. |
XU Xiaochen , CAO Dongwei , YANG Hailu , et al. Application of piezoelectric technology in pavement energy collection[J]. Highway Transportation Science and Technology(Applied Technology Edition), 2017, 13 (1): 73- 76. | |
57 | 郭志东. 自融雪纤维沥青路面在山区公路中的应用研究[J]. 安徽建筑, 2019, 26 (2): 119- 120. |
GUO Zhidong . Application study of self-melting snow fiber asphalt pavement in mountain highway[J]. Anhui Architecture, 2019, 26 (2): 119- 120. | |
58 | 熊锐, 刘子铭, 王小雯, 等. 超薄盐化物自融雪沥青混合料路用性能研究[J]. 公路, 2016, 61 (12): 236- 240. |
XIONG Rui , LIU Ziming , WANG Xiaowen , et al. Research on the road performance of ultra-thin salt compound self-melting snow asphalt mixture[J]. Highway, 2016, 61 (12): 236- 240. | |
59 | 姚锡凡, 景轩, 张剑铭, 等. 走向新工业革命的智能制造[J]. 计算机集成制造系统, 2020, 1 (1): 1- 30. |
YAO Xifan , JING Xuan , ZHANG Jianming , et al. Intelligent manufacturing towards the new industrial revolution[J]. Computer Integrated Manufacturing System, 2020, 1 (1): 1- 30. | |
60 | OSTERRIEDER P , BUDDE L , FRIEDLI T . The smart factory as a key construct of industry 4.0: a systematic literature review[J]. International Journal of Production Economics, 2020, 221 (1): 1- 10. |
61 | 许娇娥. 探究智能制造与先进数控技术[J]. 科技风, 2020, (3): 20- 21. |
XU Jiaoe . Exploring intelligent manufacturing and advanced numerical control technology[J]. Science and Technology, 2020, (3): 20- 21. | |
62 | 熊剑, 汤浪洪. 基于BIM云技术的智能建造[J]. 建筑, 2015, (24): 8- 15. |
XIONG Jian , TANG Langhong . Intelligent construction based on BIM cloud technology[J]. Architecture, 2015, (24): 8- 15. | |
63 | 刘卉卉, 赵福君. BIM云技术的智能建造分析[J]. 住宅与房地产, 2019, (25): 203- 204. |
LIU Huihui , Zhao Fujun . Analysis of intelligent construction of BIM cloud technology[J]. Housing and Real Estate, 2019, (25): 203- 204. | |
64 | 林鸣, 王青娥, 王孟钧, 等. 港珠澳大桥岛隧工程智能建造探索与实践[J]. 科技进步与对策, 2018, 35 (24): 81- 85. |
LIN Ming , WANG Qinge , WANG Mengjun , et al. Exploration and practice of intelligent construction of hong kong-zhuhai-macao bridge island tunnel project[J]. Science and Technology Progress and Countermeasures, 2018, 35 (24): 81- 85. | |
65 | 王红卫.智慧建造环境下的重大工程现场管理创新[C]//中国自动化大会摘要集.武汉: [s.n.], 2015: 1-8. |
WANG Hongwei. Innovation of on-site management of major projects in a smart construction environment[C]// The China Automation Congress Abstract Collection. Wuhan, China: [s.n.], 2015: 1-8. | |
66 | 蔡明, 乐海淳, 曹亚东, 等. 沥青路面智能建造管控体系的研究与实践[J]. 上海建设科技, 2019, (6): 50- 53. |
CAI Ming , LE Haichun , CAO Yadong , et al. Research and practice of asphalt pavement intelligent construction management and control system[J]. Shanghai Construction Science and Technology, 2019, (6): 50- 53. | |
67 | 蒋小锐, 刘建友, 高宇宇. 京张高铁八达岭长城站智能建造技术[J]. 铁道标准设计, 2020, 64 (1): 28- 33. |
JIANG Xiaorui , LIU Jianyou , GAO Yuyu . Intelligent construction technology of Badaling Great Wall station of Beijing-Zhanghai high-speed railway[J]. Railway Standard Design, 2020, 64 (1): 28- 33. | |
68 | 李萍. 浅谈高速公路地质灾害监测、预警与决策系统的建设[J]. 安徽建筑, 2010, 17 (6): 160- 162. |
LI Ping . On the construction of highway geological disaster monitoring, early warning and decision-making system[J]. Anhui Architecture, 2010, 17 (6): 160- 162. | |
69 | 陈岩. 大数据时代对地质灾害监测预警的思考[J]. 中国矿业, 2016, 25 (增刊2): 328- 330. |
CHEN Yan . Reflections on monitoring and early warning of geological hazards in the era of big data[J]. China Mining Industry, 2016, 25 (Suppl.2): 328- 330. | |
70 | 杨祥妹, 王健, 王翔. 智能报警监测系统在高速公路收费中的应用[J]. 现代交通技术, 2017, 14 (5): 82- 84. |
YANG Xiangmei , WANG Jian , WANG Xiang . Application of intelligent alarm monitoring system in highway toll collection[J]. Modern Transportation Technology, 2017, 14 (5): 82- 84. | |
71 | 阎宗岭, 柴贺军, 黄河. 基于RFID的公路危岩智能安全监测与现场报警系统[J]. 公路, 2017, 62 (6): 23- 27. |
YAN Zongling , CHAI Hejun , HUANG He . RFID-based intelligent safety monitoring and on-site alarm system for highway dangerous rock[J]. Highway, 2017, 62 (6): 23- 27. | |
72 | 李养军, 彭自强, 吴龙彪, 等. 基于复合传感与局域自组网的公路边坡智能实时监测平台设计[J]. 铁道建筑技术, 2019, (8): 23- 28. |
LI Yangjun , PENG Ziqiang , WU Longbiao , et al. Design of an intelligent real-time monitoring platform for highway slopes based on composite sensing and local ad hoc network[J]. Railway Construction Technology, 2019, (8): 23- 28. | |
73 | 肖德广, 梁林亮, 郭君宇, 等. 高速公路外场监控核心设备智能监测系统研究[J]. 交通建设与管理, 2019, (4): 101- 102. |
XIAO Deguang , LIANG Linliang , GUO Junyu , et al. Research on the intelligent monitoring system of core equipment for highway outfield monitoring[J]. Transportation Construction and Management, 2019, (4): 101- 102. | |
74 | 刘博. 高速公路智能监测预警机器人系统研究[J]. 机电信息, 2019, (33): 52- 53. |
LIU Bo . Research on Intelligent Monitoring and early warning robot system of expressway[J]. Electromechanical Information, 2019, (33): 52- 53. | |
75 | 王身宁, 孙发军, 赵文秀, 等. 公路桥梁智能监测探究[J]. 工程技术研究, 2019, 4 (18): 100- 101. |
WANG Shenning , SUN Fajun , ZHAO Wenxiu , et al. Research on intelligent monitoring of highway bridges[J]. Engineering Technology Research, 2019, 4 (18): 100- 101. | |
76 | 田红保, 王强. 基于智慧物联的地质灾害易发区监测预警系统研究[J]. 国土资源信息化, 2015, (4): 43- 46. |
TIAN Hongbao , WANG Qiang . Research on the monitoring and early warning system of geological hazard prone areas based on the intelligent internet of things[J]. Land and Resources Informationization, 2015, (4): 43- 46. | |
77 | 王浩永. 浅谈地质灾害监测中的BOTDR技术[J]. 建材与装饰, 2011, (4): 413- 415. |
WANG Haoyong . Talking about BOTDR technology in geological disaster monitoring[J]. Building Materials and Decorations, 2011, (4): 413- 415. | |
78 | 匡薇, 孙卫东, 常玲, 等. 合成孔径雷达遥感地质应用综述[J]. 西部资源, 2020, (2): 141- 143. |
KUANG Wei , SUN Weidong , CHANG Ling , et al. A review of synthetic aperture radar remote sensing geological applications[J]. West China Resources, 2020, (2): 141- 143. | |
79 | 康义凯. 机载LiDAR技术在地质灾害监测中的应用研究[J]. 测绘与空间地理信息, 2017, 40 (9): 117- 119. |
KANG Yikai . Application study of airborne LiDAR technology in geological hazard monitoring[J]. Surveying and Mapping and Spatial Geographic Information, 2017, 40 (9): 117- 119. | |
80 | 潘福全, 亓荣杰, 张璇, 等. 无人驾驶汽车研究综述与发展展望[J]. 科技创新与应用, 2017, (2): 27- 28. |
PAN Fuquan , QI Rongjie , ZHANG Xuan , et al. Review and development prospect of driverless car research[J]. Science and Technology Innovation and Application, 2017, (2): 27- 28. | |
81 |
BELLAMY D , PRAVICA L . Assessing the impact of driverless haul trucks in Australian surface mining[J]. Resources Policy, 2011, 36 (2): 149- 158.
doi: 10.1016/j.resourpol.2010.09.002 |
82 | WINSTION C , MANNERING F . Implementing techn-ology to improve public highway performance: a leapfrog technology from the private sector is going to be necessary[J]. Economics of Transportation, 2014, 3 (2): 158- 165. |
83 | 程加园, 朱定见. 汽车自动驾驶系统的研究[J]. 装备制造, 2010, (1): 151- 160. |
CHENG Jiayuan , ZHU Dingjian . Research on autonomous driving system[J]. Equipment Manufacturing, 2010, (1): 151- 160. | |
84 | 余振刚,张婧,牟晴.国内外无人驾驶汽车发展现状及我国发展对策建议[EB/OL]. (2016-05-19)[2020-03-05]. http://www.paper.edu.cn/releasepaper/content/201605-673. |
85 | 陈龙.城市环境下无人驾驶智能车感知系统若干关键技术研究[D].武汉:武汉大学, 2013. |
CHEN Long. Research on some key technologies of driverless smart car perception system in urban environment[D]. Wuhan: Wuhan University, 2013. | |
86 | 辛煜.无人驾驶车辆运动障碍物检测、预测和避撞方法研究[D].合肥:中国科学技术大学, 2014. |
XIN Yu. Research on detection, prediction and collision avoidance methods of moving obstacles for unmanned vehicles[D]. Hefei: University of Science and Technology of China, 2014. | |
87 | 郭敏. 为什么要发展无人驾驶车辆?[J]. 中国公路, 2020, (1): 38- 41. |
GUO Min . Why develop driverless vehicles?[J]. China Highway, 2020, (1): 38- 41. | |
88 | 林一平. 不断创新发展的现代无人驾驶汽车[J]. 专用汽车, 2003, (1): 12- 14. |
LIN Yiping . Continuously developing and developing modern driverless cars[J]. Special Purpose Vehicles, 2003, (1): 12- 14. | |
89 | 张贤启, 余有晟, 刘俊才. 无人驾驶汽车的发展及可行性[J]. 山东工业技术, 2015, (4): 50- 51. |
ZHANG Xianqi , YU Yousheng , LIU Juncai . Development and feasibility of driverless cars[J]. Shandong Industrial Technology, 2015, (4): 50- 51. | |
90 | 冯学强, 张良旭, 刘志宗. 无人驾驶汽车的发展综述[J]. 山东工业技术, 2015, (5): 51- 52. |
FENG Xueqiang , ZHANG Liangxu , LIU Zhizong . Overview of the development of driverless cars[J]. Shandong Industrial Technology, 2015, (5): 51- 52. | |
91 | 季一木, 陈治宇, 田鹏浩, 等. 无人驾驶中3D目标检测方法研究综述[J]. 南京邮电大学学报(自然科学版), 2019, 39 (4): 72- 79. |
JI Yimu , CHEN Zhiyu , TIAN Penghao , et al. Review of 3D target detection methods in unmanned driving[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2019, 39 (4): 72- 79. | |
92 | 王世峰, 戴祥, 徐宁, 等. 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报(自然科学版), 2017, 40 (1): 1- 6. |
WANG Shifeng , DAI Xiang , XU Ning , et al. Overview of driverless car environment perception technology[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2017, 40 (1): 1- 6. | |
93 | 李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[J]. 国外电子测量技术, 2019, 38 (6): 72- 79. |
LI Yongdan , MA Tianli , CHEN Chaobo , et al. Overview of unmanned vehicle path planning algorithms[J]. Foreign Electronic Measurement Technology, 2019, 38 (6): 72- 79. | |
94 | 陈超, 吕植勇, 付姗姗, 等. 国内外车路协同系统发展现状综述[J]. 交通信息与安全, 2011, 29 (1): 102- 105. |
CHEN Chao , LÜ Zhiyong , FU Shanshan , et al. Overview of the development status of vehicle and road cooperative systems at home and abroad[J]. Transportation Information and Safety, 2011, 29 (1): 102- 105. | |
95 | 庞剑, 贺岩松, 左曙光, 等. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30 (6): 1- 197. |
PANG Jian , HE Yansong , ZUO Shuguang , et al. Academic review of China automotive engineering·2017[J]. China Journal of Highway and Transport, 2017, 30 (6): 1- 197. | |
96 | JIA D , LU K , WANG J . A disturbance-adaptive design for VANET-enabled vehicle platoon[J]. IEEE Transactions on Vehicular Technology, 2014, 63 (2): 527- 539. |
97 | HYEONMI K . Variable signal progression bands for transit vehicles under dwell time uncertainty and traffic queues[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (1): 109- 122. |
98 | TIEN T L , GRAHAM C , MARK W , et al. Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1269- 1277. |
99 | ZHAO J , XIZHAO Z . Improving the operational efficiency of buses with dynamic use of exclusive bus lane at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (2): 642- 653. |
100 | HE X , LIU H X , LIU X . Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C: Emerging Technologies, 2015, 61 (1): 106- 120. |
101 | YANG H , RAKHA H , ALA M V . Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (6): 1575- 1585. |
102 | CONCEIÇÃO H, DAMAS L, FERREIRA M, et al. Large-scale simulation of V2V environments[C]//Proceedings of the Symposium on Applied Computing. Fortaleza, Brazil: ACM, 2008: 1-6. |
103 | DE NUNZIO G , GOMES G , CANUDAS-DE-WIT C , et al. Speed advisory and signal offsets control for arterial bandwidth maximization and energy consumption reduction[J]. IEEE Transactions on Control Systems Technology, 2016, 12 (3): 875- 887. |
104 |
HE Q , HEAD K L , DING J . PAMSCOD: Platoon-based arterial multi-modal signal control with online data[J]. Transportation Research Part C: Emerging Technologies, 2012, 20 (1): 164- 184.
doi: 10.1016/j.trc.2011.05.007 |
105 |
SAIÁNS-VÁZQUEZ J , ORDÇÑEZ-MORALES E , LÇPEZ-NORES M , et al. Intersection intelligence: supporting urban platooning with virtual traffic lights over virtualized intersection-based routing[J]. Sensors, 2018, 18 (11): 1- 16.
doi: 10.1109/JSEN.2018.2828616 |
106 | CHEN L , CHANG C . Cooperative traffic control with green wave coordination for multiple intersections based on the internet of vehicles[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 47 (7): 1- 15. |
107 |
XU B , JEFF B X , YOUGANG B , et al. Cooperative method of traffic signal optimization and speed control of connected vehicles at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (4): 1390- 1403.
doi: 10.1109/TITS.2018.2849029 |
108 |
BELKHOUCHE F . Collaboration and optimal conflict resolution at an unsignalized intersection[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (6): 2301- 2312.
doi: 10.1109/TITS.2018.2867256 |
109 | 文庭瑞, 储文韬, 李昱昕, 等. STM32的车路协同控制半实物仿真系统[J]. 单片机与嵌入式系统应用, 2019, 19 (12): 65- 68. |
WEN Tingrui , CHU Wentao , LI Yuxin , et al. STM32 vehicle-road collaborative control semi-physical simulation system[J]. Microcontrollers and Embedded Systems, 2019, 19 (12): 65- 68. | |
110 | 陈新海, 祖晖, 王博思. 面向车路协同的智慧路侧系统设计[J]. 交通与运输, 2019, 35 (6): 62- 65. |
CHEN Xinhai , ZU Hui , WANG Bosi . Design of intelligent roadside system for vehicle-road cooperation[J]. Transportation and Transportation, 2019, 35 (6): 62- 65. | |
111 |
LO N , TSAI J . An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks without pairings[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (5): 1319- 1328.
doi: 10.1109/TITS.2015.2502322 |
112 | 李敏,王少飞,付建胜.基于智能车路协同技术的应用业务通信需求分析综述[C]// 2017世界交通运输大会论文集.北京: [s.n.], 2017: 1-14. |
LI Min, WANG Shaofei, FU Jiansheng. Overview of analysis of application business communication needs based on intelligent vehicle-road collaboration technology[C]//World Transport Convention. Beijing: [s.n.], 2017: 1-14. | |
113 | 马晓威, 范博, 何佳, 等. 基于车路协同多业务优先级的车载通信退避算法[J]. 交通运输研究, 2019, 5 (4): 76- 88. |
MA Xiaowei , FAN Bo , HE Jia , et al. Vehicle-based communication backoff algorithm based on vehicle-road cooperative multi-service priority[J]. Transportation Research, 2019, 5 (4): 76- 88. | |
114 | 李原. 毫米波雷达在车路协同系统中的应用研究[J]. 工业控制计算机, 2020, 33 (1): 44- 46. |
LI Yuan . Application research of millimeter wave radar in vehicle-road collaboration system[J]. Industrial Control Computer, 2020, 33 (1): 44- 46. | |
115 | 程显毅, 施佺, 朱建新, 等. 大数据环境下的车路人协同控制模型VID[J]. 计算机科学, 2019, 46 (增刊2): 185- 188. |
CHENG Xianyi , SHI Ye , ZHU Jianxin , et al. Vehicle-pedestrian collaborative control model VID in big data environment[J]. Computer Science, 2019, 46 (Suppl.2): 185- 188. | |
116 | 陈泽, 蔡明懋, 高杰, 等. 车路协同环境下的斑马线安全警示系统[J]. 青岛理工大学学报, 2019, 40 (5): 106- 112. |
CHEN Ze , CAI Mingmao , GAO Jie , et al. Zebra crossing safety warning system under vehicle-road cooperative environment[J]. Journal of Qingdao Technological University, 2019, 40 (5): 106- 112. | |
117 | 陈新海, 祖晖, 王博思, 等. 车路协同车载高精定位服务系统设计[J]. 激光杂志, 2019, 40 (11): 109- 113. |
CHEN Xinhai , ZU Hui , WANG Bosi , et al. Design of vehicle-road cooperative vehicle-mounted high-precision positioning service system[J]. Laser Magazine, 2019, 40 (11): 109- 113. | |
118 | 张蕾, 朱雪田, 李金艳. 5G网络切片在车路协同系统中的应用研究[J]. 电子技术应用, 2020, 46 (1): 12- 16. |
ZHANG Lei , ZHU Xuetian , LI Jinyan . Application research of 5G network slicing in vehicle-road cooperation system[J]. Electronic Technology Application, 2020, 46 (1): 12- 16. | |
119 | 李理, 郭卫芳. 5G车路协同安全风险研究[J]. 信息通信, 2019, (12): 38- 39. |
LI Li , GUO Weifang . Research on 5G vehicle-road collaborative security risk[J]. Information Communication, 2019, (12): 38- 39. | |
120 | 伍永豪, 余正红, 李聪. 基于物联网的高速公路安全预警系统研究[J]. 计算机与数字工程, 2014, 42 (2): 280- 285. |
WU Yonghao , YU Zhenghong , LI Cong . Research on highway safety early warning system based on internet of things[J]. Computer and Digital Engineering, 2014, 42 (2): 280- 285. | |
121 | 周超. 基于物联网的高速公路边坡实时监测系统设计[J]. 人民交通, 2019, (7): 81- 82. |
ZHOU Chao . Design of a real-time monitoring system for highway slopes based on internet of things[J]. People's Transportation, 2019, (7): 81- 82. | |
122 | 薛长龙, 张代新. 基于物联网技术的高速公路边坡监测预警系统研究[J]. 公路交通科技(应用技术版), 2019, 15 (11): 64- 67. |
XUE Changlong , ZHANG Daixin . Research on highway slope monitoring and early warning system based on internet of things technology[J]. Highway Transportation Science and Technology(Applied Technology Edition), 2019, 15 (11): 64- 67. | |
123 | 时恒心, 孟强, 刘梦依, 等. 基于物联网的高速公路主动发光诱导系统设计[J]. 计算机技术与发展, 2020, (3): 1- 11. |
SHI Hengxin , MENG Qiang , LIU Mengyi , et al. Design of active light emission induction system of expressway based on internet of things[J]. Computer Technology and Development, 2020, (3): 1- 11. | |
124 | 黄奕辉, 李旭辉, 谢帮华. 基于物联网的公路养护施工安全智能监管系统应用研究[J]. 公路, 2019, 64 (12): 282- 285. |
HUANG Yihui , LI Xuhui , XIE Banghua . Application research of intelligent maintenance supervision system for highway maintenance construction safety based on internet of things[J]. Highway, 2019, 64 (12): 282- 285. | |
125 | 杨翠, 王少飞, 胡国辉, 等. 基于物联网技术的智慧型公路隧道照明系统[J]. 公路, 2015, 60 (5): 153- 157. |
YANG Cui , WANG Shaofei , HU Guohui , et al. Intelligent highway tunnel lighting system based on internet of things technology[J]. Highway, 2015, 60 (5): 153- 157. | |
126 | 王开然. 基于"大数据+物联网"技术的高速公路智能调度平台建设[J]. 机电信息, 2019, (20): 121- 122. |
WANG Kairan . Construction of expressway intelligent dispatch platform based on "big data + internet of things" technology[J]. Electromechanical Information, 2019, (20): 121- 122. | |
127 | 殷亚君. 大数据时代基于物联网技术的智慧高速公路研究[J]. 中国建材科技, 2019, 28 (4): 112- 115. |
YIN Yajun . Research on smart highway based on internet of things technology in the era of big data[J]. China Building Materials Science and Technology, 2019, 28 (4): 112- 115. | |
128 | 洪泽, 洪锋, 陈振娇. 针对车联网信息安全的加密引擎芯片设计[J]. 网络安全技术与应用, 2020, (2): 36- 38. |
HONG Ze , HONG Feng , CHEN Zhenjiao . Design of encryption engine chip for information security of Internet of vehicles[J]. Network Security Technology and Application, 2020, (2): 36- 38. | |
129 | 常玲, 赵蓓, 薛姗, 等. 车联网信息安全威胁分析及防护思路[J]. 移动通信, 2019, 43 (11): 47- 50. |
CHANG Ling , ZHAO Bei , XUE Shan , et al. Analysis of internet of vehicles information security threats and protection ideas[J]. Mobile Communication, 2019, 43 (11): 47- 50. | |
130 | 邓华丽. 探究混合加密算法在物联网信息安全传输系统中的应用[J]. 网络安全技术与应用, 2016, (11): 63- 64. |
DENG Huali . Explore the application of hybrid encryption algorithm in the information transmission system of Internet of Things[J]. Network Security Technology and Application, 2016, (11): 63- 64. | |
131 | PARUCHURI V, DURRESI A. PAAVE: protocol for anonymous authentication in vehicular networks using smart cards[C]//Global Telecommunications Conference. Houston, USA: IEEE, 2011: 55-62. |
132 | ZHANG C, LIN X, LU R, et al. RAISE: an efficient RSU-aided message authentication scheme in vehicular communication networks[C]//International Conference on Communication. Beijing: IEEE, 2008: 19-23. |
133 | CHIM T , YIU S , HUI L C , et al. SPECS: secure and privacy enhancing communications schemes for vanets[J]. Ad Hoc Networks, 2011, 9 (2): 189- 203. |
134 | HORNG S , TZENG S , PAN Y , et al. B-SPECS+: batch verification for secure pseudonymous authentication in vanet[J]. IEEE Transactions on Information Forensics & Security, 2013, 8 (11): 1860- 1875. |
135 |
SHIM K A . An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (4): 1874- 1883.
doi: 10.1109/TVT.2012.2186992 |
136 | KUMAR P , KUMARI S , SHARMA V , et al. A certificateless aggregate signature scheme for healthcare wireless sensor network[J]. Sustainable Computing Informatics & Systems, 2018, 18 (1): 80- 89. |
[1] | Donglan LIU,Xin LIU,Jianfei CHEN,Wenting WANG,Hao ZHANG,Lei MA,Dong LI. End-to-end security encryption scheme of NB-IoT for smart grid based on physical unclonable function [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 63-71. |
[2] | HUANG Zhong, GE Liansheng. An unified access method for Web services in IoT based on CoAP [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 16-21. |
|