Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 51-57.doi: 10.6040/j.issn.1672-3961.0.2019.414

• Machine Learning & Data Mining • Previous Articles     Next Articles

Adaptive fusion target tracking based on joint detection

Baocheng LIU(),Yan PIAO*(),Xuemei SONG   

  1. College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130012, Jilin, China
  • Received:2019-07-22 Online:2020-06-01 Published:2020-06-16
  • Contact: Yan PIAO E-mail:719741840@qq.com;piaoyan@cust.edu.cn
  • Supported by:
    吉林省科技支撑资助项目(20180201091GX);吉林省科技创新中心资助项目(20180623039TC)

Abstract:

Due to the interference of various factors in the complex situation of reality, the trackers had some problems such as model drift and tracking failure. An adaptive fusion target tracking based on joint detection algorithm was proposed to improve the robustness and accuracy of the tracker. The deep and shallow convolutional features acted on the correlation filters separately to obtain response scores according to their respective advantages, and adaptively fused the response scores of different convolutional features by minimizing the loss. Then it combined with the location detection method to judge the validity and authenticity of the predicted location, so as to get the optimal target tracking results. A large number of tests were done in two open databases: OTB-2015 and VOT-2017. The experimental results showed that the proposed method was 10% more robust and 3.9% more accurate than the LSART algorithm. It also had excellent performance for occlusion and scale variation.

Key words: machine vision, target tracking, adaptive fusion, convolutional feature, correlation filtering

CLC Number: 

  • TP391.41

Fig.1

Block diagram of tracking based on correlation filters"

Fig.2

The overall block diagram of the proposed approach"

Fig.3

Tracking results of five video sequences"

Table 1

Comparison of the proposed method with the trackers of OTB-2015"

方法 精确率/% 成功率/%
Ours 92.4 71.0
ECO 91.0 70.0
C-COT 90.9 69.0
MDNet 89.9 68.5
TCNN 88.4 66.1
DeepSRDCF 85.1 64.3
STRCF 83.5 65.1
BACF 81.3 62.2
SRDCF 78.9 60.5
SiameseFC 77.3 58.2

Table 2

Comparisons of the proposed method with the trackers of VOT-2017"

方法 平均重叠期望 准确性 鲁棒性
Ours 0.341 0.512 0.196
LSART 0.323 0.493 0.218
CFWCR 0.303 0.484 0.267
CFCF 0.286 0.509 0.281
ECO 0.280 0.483 0.276
Gnet 0.274 0.502 0.276
MCCT 0.270 0.525 0.323
C-COT 0.267 0.494 0.318
CSRDCF 0.256 0.491 0.356
SiamDCF 0.249 0.500 0.473
MCPF 0.248 0.510 0.427
UPDT 0.378 0.536 0.184
1 葛宝义, 左宪章, 胡永江, 等. 基于双步相关滤波的目标跟踪算法[J]. 红外与激光工程, 2018, 47 (12): 388- 397.
GE Baoyi , ZUO Xianzhang , HU Yongjiang , et al. Object tracking algorithm based on two-step correlation filter[J]. Infrared and Laser Engineering, 2018, 47 (12): 388- 397.
2 BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//Proceeding of the European Conference on Computer Vision. Munich, Germany: Springer, 2018.
3 BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010.
4 HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Berlin, Germany: Springer, 2012.
5 DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014.
6 HENRIQUES J F , CASERO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390
7 DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015.
8 DUANMU F , MA Z , WNAG Y . Fast mode and partition decision using machine learning for intra-frame coding in HEVC screen content coding extension[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6 (4): 517- 531.
doi: 10.1109/JETCAS.2016.2597698
9 NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. LAS Vegas, USA: IEEE, 2016.
10 NAM H, BAEK M, HAN B. Modeling and propagating cnns in a tree structure for visual tracking[J/OL]. Computer Science. arXiv: 1608.07242v1.[2019-09-28]. https://arxiv.org/abs/1608.07242.
11 DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Santiago, Chile: IEEE, 2015.
12 DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016.
13 DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu Hawaii, USA: IEEE, 2017.
14 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016.
15 WU Y , LIM J , YANG M H . Object tracking benchmark[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226
16 KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking vot2017 challenge results[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017.
17 LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018.
18 GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017.
19 BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016.
20 刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39 (6): 242- 255.
LIU Wanjun , SUN Hu , JIANG Wentao . Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Optica Sinica, 2019, 39 (6): 242- 255.
[1] HOU Qiulin, SUN Jie, HUANG Panling, SUN Chao, MOU Wenping. Algorithm and error analysis of tool geometric parameters detection based on machine vision [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 77-82.
[2] MA Shuaiyifan, ZHAO Zijian. Surgical navigation system based on anartificialmarker [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 63-68.
[3] GUO Zhibo, DONG Jian, PANG Cheng. A Mean-Shift target tracking algorithm fused multi technology [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 10-16.
[4] GE Kairong, CHANG Faliang, DONG Wenhui. Sparse representation tracking method based on locality sensitive histogram [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(5): 14-19.
[5] QIU Xiaoxin1,2, ZHANG Wenqiang1,2*, QIN Jinxian1,2, DU Zhengyang1,2, ZHANG Defeng1,2. Multi-target real-time tracking method under harsh environment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 21-27.
[6] Yue Khing Toh1, XIAO Wendong2, XIE Lihua1. Wireless sensor network for distributed target tracking: practices via real test bed development [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 50-56.
[7] BI Xia-fei,SUN Tong-jing,YANG Fu-gang,ZHANG Wei . Research on a noncontact parallel continuous square billet online definitelength cutting system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 52-55 .
[8] MA Li,CHANG Faliang,QIAO Yizheng . Nonrigid target tracking based on genetic algorithm and particle filter [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 26-29 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[2] HAN Xue. Example analysis for landslide hazard remote monitoring at  the Pingzhuang west open-pit mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 116 -120 .
[3] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[4] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[5] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[6] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[7] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[8] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[9] ZHANG Ying,LANG Yongmei,ZHAO Yuxiao,ZHANG Jianda,QIAO Peng,LI Shanping . Research on technique of aerobic granular sludge cultivationby seeding EGSB anaerobic granular sludge[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 56 -59 .
[10] LI Fangjia, GAO Shangce, TANG Zheng*, Ishii Masahiro, Yamashita Kazuya. 3D similar pattern generation of snow crystals with cellular automata[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 102 -105 .