Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (1): 101-108.doi: 10.6040/j.issn.1672-3961.0.2018.552
• Chemistry and Environment • Previous Articles Next Articles
CLC Number:
1 | 黄道平, 刘乙奇, 李艳. 软测量在污水处理过程中的研究与应用[J]. 化工学报, 2011, 62 (1): 1- 9. |
HUANG Daoping , LIU Yiqi , LI Yan . Soft sensor research and its application in wastewater treatment[J]. CIESC Jorunal, 2011, 62 (1): 1- 9. | |
2 |
杨浩, 莫卫林, 熊智新, 等. 基于RPLS的造纸废水处理过程软测量建模[J]. 中国造纸, 2016, 35 (10): 31- 35.
doi: 10.11980/j.issn.0254-508X.2016.10.007 |
YANG Hao , MO Weilin , XIONG Zhixin , et al. Soft sensor modeling of papermaking effluent treatment processes using RPLS[J]. China Pulp & Paper, 2016, 35 (10): 31- 35.
doi: 10.11980/j.issn.0254-508X.2016.10.007 |
|
3 | 徐龙琴, 刘双印. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42 (5): 80- 86. |
XU Longqin , LIU Shuangyin . Water quality prediction model based on APSO-WLSSVR[J]. Journal of Shandong University of Technology (Engineering Science), 2012, 42 (5): 80- 86. | |
4 | 汪瑶, 徐亮, 殷文志, 等. 基于ANN和LSSVR的造纸废水处理过程软测量建模[J]. 中国造纸学报, 2017, 32 (1): 50- 54. |
WANG Yao , XU Liang , YIN Wenzhi , et al. Soft sensor modeling of papermaking treatment processes based on ANN and LSSVR[J]. Transactions of China Pulp and Paper, 2017, 32 (1): 50- 54. | |
5 |
王欣, 宋翼颉, 秦斌, 等. 基于LSSVM的污水处理过程建模[J]. 湖南工业大学学报, 2016, 30 (1): 59- 63.
doi: 10.3969/j.issn.1673-9833.2016.01.011 |
WANG Xin , SONG Yijie , QIN Bin , et al. Modeling of sewage treatment process based on MIMO-LSSVM[J]. Journal of Hunan University of Technology, 2016, 30 (1): 59- 63.
doi: 10.3969/j.issn.1673-9833.2016.01.011 |
|
6 | 邱禹, 刘乙奇, 吴菁, 等. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018, 69 (7): 3101- 3113. |
QIU Yu , LIU Yiqi , WU Jing . A self-adaptive multi-output soft sensor modeling based on deep neural network[J]. CIESC Jorunal, 2018, 69 (7): 3101- 3113. | |
7 |
宋留, 杨冲, 张辉, 等. 造纸废水处理过程的高斯过程回归软测量建模[J]. 中国环境科学, 2018, 38 (7): 2564- 2571.
doi: 10.3969/j.issn.1000-6923.2018.07.023 |
SONG Liu , YANG Chong , ZHANG Hui , et al. Soft-sensor modeling of papermaking wastewater treatment process based on Gaussian process[J]. China Environmental Science, 2018, 38 (7): 2564- 2571.
doi: 10.3969/j.issn.1000-6923.2018.07.023 |
|
8 | 柴伟, 纪镐南. 污水处理出水BOD区间预测建模[J]. 哈尔滨工业大学学报, 2018, 50 (2): 71- 76. |
CHAI Wei , JI Haonan . Interval predictor models for effluent BOD of wastewater treatment[J]. Journal of Harbin Institute of Technology, 2018, 50 (2): 71- 76. | |
9 | 车笑卿, 熊伟丽. 基于仿射传播聚类的局部TDGPR的自适应软测量建模[J]. 计算机与应用化学, 2017, 34 (11): 850- 857. |
CHE Xiaoqing , XIONG Weili . Self-adaptive soft sensor based on affine propagation clustering of local TDGPR models[J]. Computers and Applied Chemistry, 2017, 34 (11): 850- 857. | |
10 |
LIU Ziwei , GE Zhiqiang , CHEN Guangjie , et al. Adaptive soft sensors for quality prediction under the framework of Bayesian network[J]. Control Engineering Practice, 2018, 72, 19- 28.
doi: 10.1016/j.conengprac.2017.10.018 |
11 |
王通, 高宪文, 刘文芳. 基于改进即时学习算法的动液面软测量建模[J]. 东北大学学报(自然科学版), 2015, 36 (7): 918- 922.
doi: 10.3969/j.issn.1005-3026.2015.07.002 |
WANG Tong , GAO Xianwen , LIU Wenfang . Soft sensor for determination of dynamic fluid levels based on enhanced Just-in-Time learning algorithm[J]. Journal of Northeastern University(Natural Science), 2015, 36 (7): 918- 922.
doi: 10.3969/j.issn.1005-3026.2015.07.002 |
|
12 | 汪世杰, 王振雷, 王昕. 基于JIT-MOSVR的软测量方法及应用[J]. 化工学报, 2017, 68 (3): 947- 955. |
WANG Shijie , WANG Zhenlei , WANG Xin . Soft-sensor method based on JIT-MOSVR and its application[J]. CIESC Jorunal, 2017, 68 (3): 947- 955. | |
13 | 袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J]. 化工学报, 2016, 67 (3): 724- 728. |
YUAN Xiaofeng , GE Zhiqiang , SONG Zhihuan . Adaptive soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Jorunal, 2016, 67 (3): 724- 728. | |
14 | FU Y , YANG W , XU O , et al. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating[J]. Measurement Science & Technology, 2017, 28 (4): 45101- 45108. |
15 |
KANEKO H , FUNATSU K . Discussion on time difference models and intervals of time difference for application of soft sensors[J]. Industrial and Engineering Chemistry Research, 2013, 52 (3): 1322- 1334.
doi: 10.1021/ie302582v |
16 |
SHI Honglan , KIM M J , LIU Hongbin , et al. Process modeling based on nonlinear PLS models using a prior knowledge-driven time difference method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 93- 105.
doi: 10.1016/j.jtice.2016.10.013 |
17 | 李珊, 饶文碧. 基于视频的矿井中人体运动区域检测[J]. 计算机科学, 2018, 45 (4): 291- 295. |
LI Shan , RAO Wenbi . Video-based detection of human motion area in mine[J]. Computer Science, 2018, 45 (4): 291- 295. | |
18 |
ZHU Qinqin , LIU Qiang , QIN S J . Concurrent quality and process monitoring with canonical correlation analysis[J]. Journal of Process Control, 2017, 60, 95- 103.
doi: 10.1016/j.jprocont.2017.06.017 |
19 |
WEI Zhihui , WANG Liqian , LIANG Xiao . Image dehazing using two-dimensional canonical correlation analysis[J]. Computer Vision Iet, 2015, 9 (6): 903- 913.
doi: 10.1049/iet-cvi.2014.0324 |
[1] | Guangli LI,Bin LIU,Tao ZHU,Yi YIN,Hongbin ZHANG. Cross-media retrieval model based on choosing key canonical correlated vectors [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 38-46. |
[2] | CHEN Zhiwen, PENG Tao, YANG Chunhua , HE Zhangming, YANG Chao, YANG Xiaoyue. A fault detection method based on modified canonical correlation analysis [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 44-50. |
|