Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (6): 63-72.doi: 10.6040/j.issn.1672-3961.0.2019.173
• Control Science & Engineering - Special Topic on Robot • Previous Articles Next Articles
Caihong LI(),Chun FANG,Zhiqiang WANG,Bin XIA,Fengying WANG
CLC Number:
1 |
李伟莉, 赵东辉. 基于栅格法与神经元的机器人全区域覆盖算法[J]. 机械设计与制造, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065 |
LI Weili , ZHAO Donghui . Complete coverage path planning for mobile robot based on grid method and neuronal[J]. Machinery Design & Manufacture, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065 |
|
2 | 郭典新, 高龙琴, 李志昂, 等. 割草机器人全覆盖式路径规划平台设计与实现[J]. 现代制造工程, 2018, (11): 50- 53. |
GUO Dianxin , GAO Longqin , LI Zhiang , et al. Mowing robot full coverage path planning platform design and implementation[J]. Modern Manufacturing Engineering, 2018, (11): 50- 53. | |
3 | PARK E , KIM K J , DEL P , et al. Energy efficient complete coverage path planning for vacuum cleaning robots[J]. Lecture Notes in Electrical Engineering: Future Information Technology: Applicationand Service, 2012, 164 (1): 23- 31. |
4 | CURIAC D I , BANIAS O , VOLOSENCU C , et al. Novel bioinspired approach based on chaotic dynamics for robot patrolling missions with adversaries[J]. Entropy, 2018, 20 (5): 1- 17. |
5 | PEITGEN H O , JVRGENS H , SAUPE D . Chaos and fractals: new Frontiers of science[M]. New York, America: Springer, 2004. |
6 | SEKIGUCHI A , NAKAMURA Y . The chaotic mobile robot[J]. IEEE International Conference on Intelligent Robots and Systems, 1999, 1999 (1): 172- 178. |
7 |
VOLOS CH K , KYPRIANIDIS I M , STOUBOULOS I N . Experimental investigation on coverage performance of a chaotic autonomous mobile robot[J]. Robotics and Autonomous Systems, 2013, 61 (12): 1314- 1322.
doi: 10.1016/j.robot.2013.08.004 |
8 | FAHMY A A . Performance evaluation of chaotic mobile robot controllers[J]. International Transaction Journal of Engineering, Management & Applied Sciences & Technologies, 2012, 3 (2): 145- 158. |
9 |
CURIAC D I , VOLOSENCU C . Path planning algorithm based on arnold cat map for surveillance UAVs[J]. Defence Science Journal, 2015, 65 (6): 483- 488.
doi: 10.14429/dsj.65.8483 |
10 | MARTINS-FILHO L S , MACAU E E N . Patrol mobile robots and chaotic trajectories[J]. Mathematical Problems in Engineering, 2007, 2007, 1- 13. |
11 | LI C H , WANG ZH Q , FANG CH , et al. An integrated algorithm of CCPP task for autonomous mobile robot under special missions[J]. International Journal of Computational Intelligence Systems, 2018, 2018 (11): 1357- 1368. |
12 | LI C H , SONG Y , WANG F Y , et al. A chaotic coverage path planner of the mobile robot based on the Chebychev map for special missions[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (9): 1305- 1319. |
13 | LI C H , SONG Y , WAGN F Y , et al. A bounded strategy of the mobile robot coverage path planning based on Lorenz chaotic system[J]. International Journal of Advanced Robotic Systems, 2016, 2016 (5): 1- 9. |
14 |
SHEN CH W , YU S M , LV J H , et al. A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2014, 61 (3): 854- 864.
doi: 10.1109/TCSI.2013.2283994 |
15 | SOLAMI E A , AHMAD M , VOLOS C , et al. A new hyperchaotic system-based design for efficient bijective substitution-boxes[J]. Entropy, 2018, 20 (525): 1- 17. |
16 | 朱道宇. 一个新的超混沌系统的叉型分支和复杂动力学[J]. 贵州大学学报(自然科学版), 2017, 34 (3): 10- 14. |
ZHU Daoyu . Pitchfork bifurcation and complex dynamics of a new hyperchaotic system[J]. Journal of Guizhou University(Natural Science), 2017, 34 (3): 10- 14. | |
17 | PAULO C R . Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system[J]. European Physical Journal B, 2017, 90 (251): 1- 7. |
18 |
温贺平. 正弦驱动的chen超混沌系统动力学特性及其电路仿真[J]. 合肥工业大学学报(自然科学版), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008 |
WEN Heping . Dynamic characteristics and circuit simulation of Chen hyperchaotic system driven by sine wave[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008 |
|
19 | THABET H, SEDDIK H. Generating a hyper-chaotic system from 3D chaotic behaivor[C]//2nd International Conference on Advanced Technologies for Signal and Image Processing. Monastir, Tunisia: Institute of Electrical and Electronics Engineers Inc, 2016: 46-51. |
20 |
SHEN CH W , YU S M , L J H , et al. Constructing hyperchaotic systems at will[J]. International Journal of Circuit Theory and Applications, 2015, 43 (12): 2039- 2056.
doi: 10.1002/cta.2062 |
21 |
FALLAHI K , LEUNG H . A cooperative mobile robot task assignment and coverage planning based on chaos synchronization[J]. International Journal of Bifurcation and Chaos, 2010, 20 (1): 161- 176.
doi: 10.1142/S021812741002548X |
22 |
陈杰睿, 冯平, 许泽凯. 一种单信道超混沌保密通信的实现[J]. 计算机与数字工程, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022 |
CHEN Jierui , FENG Ping , XU Zekai . Implementation of a secure communication based on single-hannel synchronization of hyperchaos[J]. Computer & Digital Engineering, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022 |
|
23 | FAHIM H M. Synchronization of hyperchaotic systems with application to secure communication[C]//9th Annual IEEE International Systems Conference. Vancouver, BC, Canada: Institute of Electrical and Electronics Engineers Inc., 2015: 121-126. |
24 |
AMMAR S , ABDELKRIM B , SALAH L . Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems[J]. Nonlinear Dynamics, 2016, 85 (4): 2183- 2206.
doi: 10.1007/s11071-016-2823-0 |
25 | MAO B X . Four methods for sliding mode synchronization of fractional new hyperchaotic system[J]. Paper Asia, Compendium5, 2018, 2018 (1): 118- 122. |
26 |
SUNDARAPANDIAN V , TAHER A A , ABDESSELEM B . A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation[J]. International Journal of Automation and Control, 2018, 12 (1): 5- 26.
doi: 10.1504/IJAAC.2018.088612 |
27 | VOLOS C K , KYPRIANIDIS I M , IOANNIS N , et al. Cooperation of autonomous mobile robots for surveillance missions based on hyperchaos synchronization[J]. Journal of Applied Mathematics & Bioinformatics, 2016, 6 (3): 125- 143. |
[1] | Meizhen LIU,Fengyu ZHOU,Ming LI,Yugang WANG,Ke CHEN. The composite control of backstepping control based on uncertain model compensation of wheeled mobile robot [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 36-44. |
[2] | YAN Xuan-hui, XIAO Guo-bao*. Path planning of a mobile robot based on fixed-length real number encoding mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 59-65. |
[3] | TIAN Guo-hui, ZHANG Tao-tao*, WU Hao, XUE Ying-hua, ZHOU Feng-yu. Robot navigation in a large scale environment based on distributed navigation information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 24-31. |
[4] | SUN Yi, XIAO Ji-zhong*, Flavio Cabrera-Mora. Robotic localization and power-efficient wireless networking by using multiple antennas [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 29-35. |
[5] | LI Yi-bin1, LI Cai-hong1,2, SONG Yong1. Adaptive behavior design based on FNN for the mobile robot [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 28-33. |
[6] | NIU Jun,LI Yi-bin,SONG Rui . A two-step self-localization method for mobile robots based on laser information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 46-50 . |
|