Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (6): 63-72.doi: 10.6040/j.issn.1672-3961.0.2019.173

• Control Science & Engineering - Special Topic on Robot • Previous Articles     Next Articles

Complete coverage path planning for mobile robots based on hyperchaotic synchronization control

Caihong LI(),Chun FANG,Zhiqiang WANG,Bin XIA,Fengying WANG   

  1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2019-04-16 Online:2019-12-20 Published:2019-12-17
  • Supported by:
    国家自然基金资助项目(61473179);国家自然基金资助项目(61602280);山东省自然科学基金资助项目(ZR2017MF047);淄博市校城融合发展计划项目(2018ZBXC295)

Abstract:

Based on the requirements of randomness and completeness of the mobile robots under special tasks such as the surveillance, patrol, etc., a complete coverage path planning method for robots by the hyperchaotic synchronization control strategy was proposed. The four-dimensional hyperchaotic Lorenz system was used as the main driving equation, and the hyperchaotic synchronization response equation was constructed by the single-coupled hyperchaotic synchronization control. A path planner of the chaotic robot was constructed by combining synchronized hyperchaotic synchronous response system with kinematics equation of mobile robot to produce the complete coverage path and satisfy the requirements of the special tasks. The mirror mapping method was used to limit the running range of the coverage trajectory and to avoid the static obstacles at the workspace boundary. Qualitative analysis and quantitative calculations of the planned trajectories showed that the coverage trajectories produced by hyperchaotic synchronization method had better coverage rate and randomness, which could meet the requirements of autonomous mobile robots for special tasks.

Key words: mobile robot, hyperchaotic Lorenz system, hyperchaotic synchronization control, complete coverage path planning, mirror mapping, special tasks

CLC Number: 

  • TP242.6

Fig.1

The Lyapunov exponent spectrum λ with the change of parameters c and d"

Fig.2

Phase space (or attractor) of three variables"

Fig.3

Figures of time series"

Fig.4

State synchronizations and phase diagrams of hyperchaotic principal equation and response equation"

Fig.5

Synchronization of corresponding variables for hyperchaotic equation"

Fig.6

Variation of single synchronization errors forhyperchaotic system"

Fig.7

Coverage trajectories generated by robots before and after synchronization using different variables xi and yi"

Table 1

Comparison of the coverage rate of the planned path with/without synchronization control"

是否有同步控制 覆盖率/%
i=1 i=2 i=3 i=4
无(xi) 16.50 10.50 25.25 12.75
有(yi) 35.75 35.50 44.75 30.00

Fig.8

Sensitivity of planned trajectories to initial values"

Fig.9

Mirror mapping principle"

Fig.10

Coverage trajectories in a given workplace"

Fig.11

Planned trajectories by y1"

Fig.12

Planned trajectories by y2"

Fig.13

Planned trajectories by y3"

Fig.14

Planned trajectories by y4"

Table 2

The coverage rate of the planned trajectories"

迭代次数n 覆盖率/%
y1 y2 y3 y4
5 000 86.00 81.50 78.50 78.25
10 000 98.75 93.50 94.75 94.75

Fig.15

Sensitivity of coverage trajectories to initial values in a given workplace"

1 李伟莉, 赵东辉. 基于栅格法与神经元的机器人全区域覆盖算法[J]. 机械设计与制造, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065
LI Weili , ZHAO Donghui . Complete coverage path planning for mobile robot based on grid method and neuronal[J]. Machinery Design & Manufacture, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065
2 郭典新, 高龙琴, 李志昂, 等. 割草机器人全覆盖式路径规划平台设计与实现[J]. 现代制造工程, 2018, (11): 50- 53.
GUO Dianxin , GAO Longqin , LI Zhiang , et al. Mowing robot full coverage path planning platform design and implementation[J]. Modern Manufacturing Engineering, 2018, (11): 50- 53.
3 PARK E , KIM K J , DEL P , et al. Energy efficient complete coverage path planning for vacuum cleaning robots[J]. Lecture Notes in Electrical Engineering: Future Information Technology: Applicationand Service, 2012, 164 (1): 23- 31.
4 CURIAC D I , BANIAS O , VOLOSENCU C , et al. Novel bioinspired approach based on chaotic dynamics for robot patrolling missions with adversaries[J]. Entropy, 2018, 20 (5): 1- 17.
5 PEITGEN H O , JVRGENS H , SAUPE D . Chaos and fractals: new Frontiers of science[M]. New York, America: Springer, 2004.
6 SEKIGUCHI A , NAKAMURA Y . The chaotic mobile robot[J]. IEEE International Conference on Intelligent Robots and Systems, 1999, 1999 (1): 172- 178.
7 VOLOS CH K , KYPRIANIDIS I M , STOUBOULOS I N . Experimental investigation on coverage performance of a chaotic autonomous mobile robot[J]. Robotics and Autonomous Systems, 2013, 61 (12): 1314- 1322.
doi: 10.1016/j.robot.2013.08.004
8 FAHMY A A . Performance evaluation of chaotic mobile robot controllers[J]. International Transaction Journal of Engineering, Management & Applied Sciences & Technologies, 2012, 3 (2): 145- 158.
9 CURIAC D I , VOLOSENCU C . Path planning algorithm based on arnold cat map for surveillance UAVs[J]. Defence Science Journal, 2015, 65 (6): 483- 488.
doi: 10.14429/dsj.65.8483
10 MARTINS-FILHO L S , MACAU E E N . Patrol mobile robots and chaotic trajectories[J]. Mathematical Problems in Engineering, 2007, 2007, 1- 13.
11 LI C H , WANG ZH Q , FANG CH , et al. An integrated algorithm of CCPP task for autonomous mobile robot under special missions[J]. International Journal of Computational Intelligence Systems, 2018, 2018 (11): 1357- 1368.
12 LI C H , SONG Y , WANG F Y , et al. A chaotic coverage path planner of the mobile robot based on the Chebychev map for special missions[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (9): 1305- 1319.
13 LI C H , SONG Y , WAGN F Y , et al. A bounded strategy of the mobile robot coverage path planning based on Lorenz chaotic system[J]. International Journal of Advanced Robotic Systems, 2016, 2016 (5): 1- 9.
14 SHEN CH W , YU S M , LV J H , et al. A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2014, 61 (3): 854- 864.
doi: 10.1109/TCSI.2013.2283994
15 SOLAMI E A , AHMAD M , VOLOS C , et al. A new hyperchaotic system-based design for efficient bijective substitution-boxes[J]. Entropy, 2018, 20 (525): 1- 17.
16 朱道宇. 一个新的超混沌系统的叉型分支和复杂动力学[J]. 贵州大学学报(自然科学版), 2017, 34 (3): 10- 14.
ZHU Daoyu . Pitchfork bifurcation and complex dynamics of a new hyperchaotic system[J]. Journal of Guizhou University(Natural Science), 2017, 34 (3): 10- 14.
17 PAULO C R . Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system[J]. European Physical Journal B, 2017, 90 (251): 1- 7.
18 温贺平. 正弦驱动的chen超混沌系统动力学特性及其电路仿真[J]. 合肥工业大学学报(自然科学版), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008
WEN Heping . Dynamic characteristics and circuit simulation of Chen hyperchaotic system driven by sine wave[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008
19 THABET H, SEDDIK H. Generating a hyper-chaotic system from 3D chaotic behaivor[C]//2nd International Conference on Advanced Technologies for Signal and Image Processing. Monastir, Tunisia: Institute of Electrical and Electronics Engineers Inc, 2016: 46-51.
20 SHEN CH W , YU S M , L J H , et al. Constructing hyperchaotic systems at will[J]. International Journal of Circuit Theory and Applications, 2015, 43 (12): 2039- 2056.
doi: 10.1002/cta.2062
21 FALLAHI K , LEUNG H . A cooperative mobile robot task assignment and coverage planning based on chaos synchronization[J]. International Journal of Bifurcation and Chaos, 2010, 20 (1): 161- 176.
doi: 10.1142/S021812741002548X
22 陈杰睿, 冯平, 许泽凯. 一种单信道超混沌保密通信的实现[J]. 计算机与数字工程, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022
CHEN Jierui , FENG Ping , XU Zekai . Implementation of a secure communication based on single-hannel synchronization of hyperchaos[J]. Computer & Digital Engineering, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022
23 FAHIM H M. Synchronization of hyperchaotic systems with application to secure communication[C]//9th Annual IEEE International Systems Conference. Vancouver, BC, Canada: Institute of Electrical and Electronics Engineers Inc., 2015: 121-126.
24 AMMAR S , ABDELKRIM B , SALAH L . Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems[J]. Nonlinear Dynamics, 2016, 85 (4): 2183- 2206.
doi: 10.1007/s11071-016-2823-0
25 MAO B X . Four methods for sliding mode synchronization of fractional new hyperchaotic system[J]. Paper Asia, Compendium5, 2018, 2018 (1): 118- 122.
26 SUNDARAPANDIAN V , TAHER A A , ABDESSELEM B . A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation[J]. International Journal of Automation and Control, 2018, 12 (1): 5- 26.
doi: 10.1504/IJAAC.2018.088612
27 VOLOS C K , KYPRIANIDIS I M , IOANNIS N , et al. Cooperation of autonomous mobile robots for surveillance missions based on hyperchaos synchronization[J]. Journal of Applied Mathematics & Bioinformatics, 2016, 6 (3): 125- 143.
[1] Meizhen LIU,Fengyu ZHOU,Ming LI,Yugang WANG,Ke CHEN. The composite control of backstepping control based on uncertain model compensation of wheeled mobile robot [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 36-44.
[2] YAN Xuan-hui, XIAO Guo-bao*. Path planning of a mobile robot based on fixed-length real number encoding mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(1): 59-65.
[3] TIAN Guo-hui, ZHANG Tao-tao*, WU Hao, XUE Ying-hua, ZHOU Feng-yu. Robot navigation in a large scale environment based on distributed navigation information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(1): 24-31.
[4] SUN Yi, XIAO Ji-zhong*, Flavio Cabrera-Mora. Robotic localization and power-efficient wireless networking by using multiple antennas [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 29-35.
[5] LI Yi-bin1, LI Cai-hong1,2, SONG Yong1. Adaptive behavior design based on FNN for the mobile robot [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 28-33.
[6] NIU Jun,LI Yi-bin,SONG Rui . A two-step self-localization method for mobile robots based on laser information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 46-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[3] SUN Cong-zheng,GUAN Cong-sheng,QIN Jing-yu,CHENG Chuan . The structure and performances of the electroless Ni-P alloy coating on aluminum alloy[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 108 -112 .
[4] XU Xiaodan, DUAN Zhengjie, CHEN Zhongyu. The sentiment mining method based on extended sentiment dictionary and integrated features[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 15 -18 .
[5] GAO Hou-Lei, TIAN Jia, DU Jiang, WU Zhi-Gang, LIU Chu-Min. Distributed generation—new technology in energy development[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 106 -110 .
[6] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[7] ZHANG Dao-qiang. Knowledge preserving embedding[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 1 -10 .
[8] MA Shi-Wei, MEI Zhi-Rong, ZHANG Jun-Wei, DU Jun. The mechanism and prevention technology of the inrush  water disaster warning of karst tunnels[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 12 -16 .
[9] ZHANG Xiao, LI Shu-Cai, ZHANG Qiang-Song, LIU Qin, ZHANG Ning, LIU Bin. Research in  field tests  of the influence factors of the TSP system signal collection quality[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 25 -29 .
[10] FANG Wei,JIANG Chang-sheng,QIAN Cheng-shan . H fuzzy tracking control of a class of uncertain nonlinear systems with time-varying delay[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 47 -52 .