Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 64-71.doi: 10.6040/j.issn.1672-3961.0.2019.156

• Energy and Power Engineering—Special Topic on Refrigeration Technology • Previous Articles     Next Articles

Thermodynamic characteristic analysis of power and cooling system drived by SOFC

Hanbing WANG1(),Xiaohui LIU2,Minli TIAN1,Guihua WANG1,Zeting YU1,*(),Shaobo JI1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Weichai Power Co., Ltd., Weifang 261061, Shandong, China
  • Received:2019-04-11 Online:2019-10-20 Published:2019-10-18
  • Contact: Zeting YU E-mail:1505369363@qq.com;yuzt@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目;山东省自然科学基金资助项目(ZR2019MEE045)

Abstract:

In order to improve the energy utilization efficiency of a solid oxide fuel cell, a combined power and cooling system which integrated a solid oxide fuel cell, a gas turbine and an absorption chiller was proposed. A mathematical model was developed, and the thermodynamic parameters of the system were given to study the system performance under steady-state conditions. Results showed that, under the given conditions, the SOFC electrical efficiency, the total electrical efficiency of combined system and the power-cooling efficiency were 46.81%, 54.53% and 72.24%, respectively. When the SOFC inlet temperature was 620 ℃, the maximum total electrical efficiency of combined system and the maximum power-cooling efficiency were obtained 54.66% and 72.42%, respectively. When the inlet temperature of fuel cell was 600 ℃, the cooling capacity of the combined supply system was the largest.

Key words: SOFC, absorption refrigeration, thermal performance, combined power and cooling

CLC Number: 

  • TM911

Fig.1

Schematic diagram of power-cooling combined supply system based on SOFC-GT and absorption chiller"

Table 1

Coefficient of chemical equilibrium constants"

常数 A/10-12 B/10-8 C/10-6 D/10-2 E
置换反应 5.47 -2.574 4.637 -3.915 13.209 7
重整反应 -26.31 12.406 -225.232 19.503 -66.139 5

Table 2

Comparison of output voltage"

电流密度/(A·cm-2) 电压/V 误差/%
文献[19] 本研究
0.1 0.860 0.859 -0.13
0.2 0.760 0.792 4.21
0.3 0.680 0.723 6.35
0.4 0.620 0.653 5.39
0.5 0.570 0.582 2.11
0.6 0.520 0.507 -2.60

Table 3

Polarization overvoltage parameters"

阳极交换电流密度
j0, a/(kA·cm-2)
阴极交换电流密度
j0, a/(kA·m-2)
阳极有效气体扩散系数
Daeff/(cm2·s-1)
阴极有效气体扩散系数
Dceff/(cm2·s-1)
阳极厚度La/μm 阴极厚度Lc/μm 连接体厚度Lint/μm 电解质厚度Le/μm 阳极电导率ρa 阴极电导率ρc 电解质电导率ρe 连接体电导率ρint
6.5 2.5 0.2 0.05 500 50 500 10 (9.5×107/T×exp(-1 150/T))-1 (4.2×107/T×exp(-1 200/T))-1 (3.34×104/T×exp(-10 300/T))-1 (9.3×106/T×exp(-1 100/T))-1

Table 4

Input parameters of the combined supply system"

环境温度/℃ 环境压力/kPa SOFC进出口温差/℃ 燃料利用率 蒸汽碳比 SOFC进口温度/℃ 电流密度/(A·cm-2) 压缩机等熵效率 燃气轮机及透平等熵效率 泵等熵效率 后燃室燃烧效率 电流转换器效率 单电池个数 单电池面积/cm2 压缩机压比 制冷循环高压/kPa 制冷循环低压/kPa 精馏器出口氨浓度
25 101.3 100 0.85 2.5 600 0.6 0.8 0.8 0.8 0.95 0.92 1 000 100 8 1 202 300 0.999 6

Table 5

Performance calculation results of combined power supply system"

电压/V SOFC输出功/kW 燃气轮机输出功/kW 透平输出功/kW 联供系统对外输出净功/kW 制冷量输出/kW 功冷比 吸收式制冷机制冷系数COP SOFC发电效率/% 联供系统总发电效率/% 功冷联供效率/%
0.622 1 34 341 22 013 41 714 40 013 12 989 3.081 0.479 46.81 54.54 72.24

Fig.2

Effect of steam carbon ratio on output voltage of combined power supply system"

Fig.3

Effects of steam-carbon ratio on input or output power and air mass flow of combined power supply system"

Fig.4

Effect of steam-carbon ratio on efficiency and powercooling ratio of combined power supply system"

Fig.5

The influence of fuel cell inlet temperature on output voltage of combined power supply system"

Fig.6

The influence of fuel cell inlet temperature on the input or output power and air mass flow of the combined power supply system"

Fig.7

Effect of inlet temperature of fuel cell on efficiency and power-cooling ratio of cogeneration system"

1 张亚媛, 张沛龙, 葛静. 燃料电池应用现状及发展前景[J]. 新材料产业, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017
ZHANG Yayuan , ZHANG Peilong , GE Jing , et al. Application status and development prospect of fuel cells[J]. New Material Industry, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017
2 贺华, 赵景联. 燃料电池的开发现状及其发展前景[J]. 石化技术与应用, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019
HE Hua , ZHAO Jinglian . Current aspects and treds in fuel cell[J]. Petroleum Technology and Application, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019
3 KAILA R K , AOI K . Autothermal reforming of simulated gasoline and diesel fuels[J]. International Journal of Hydrogen Energy, 2006, 31 (13): 1934- 1941.
doi: 10.1016/j.ijhydene.2006.04.004
4 MOSELEY P T . Fuel Cell systems explained[J]. Journal of Power Sources, 2001, 93 (1): 285.
5 于泽庭, 蒙青山, 张承慧, 等. CO2近零排放固体氧化物燃料电池冷热电联供系统的性能分析[J]. 中国电机工程学报, 2017, 37 (1): 200- 208.
YU Zeting , MENG Qingshan , ZHANG Chenghui , et al. Performance analysis of CO2 near zero emission solid oxide fuel cell combined cooling heating and power system[J]. Journal of Electrical Engineering of China, 2017, 37 (1): 200- 208.
6 MENG Q , HAN J , KONG L , et al. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle[J]. International Journal of Hydrogen Energy, 2017, 42 (7): 4673- 4678.
doi: 10.1016/j.ijhydene.2016.09.067
7 ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121 (1): 314- 324.
8 YAN Zhequan , ZHAO Pan , WANG Jiangfeng , et al. Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink[J]. International Journal of Hydrogen Energy, 2013, 38 (8): 3352- 3363.
doi: 10.1016/j.ijhydene.2012.12.101
9 RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion & Management, 2014, 87, 318- 327.
10 YU Zeting , HAN Jitian , CAO Xianqi . Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system[J]. International Journal of Hydrogen Energy, 2011, 36 (19): 12561- 12573.
doi: 10.1016/j.ijhydene.2011.06.147
11 ZHAO Hongbin , JIANG Ting , HOU Hucan . Performance analysis of the SOFC-CCHP system based on H2O/Li—Br absorption refrigeration cycle fueled by coke oven gas[J]. Energy, 2015, 91, 983- 993.
doi: 10.1016/j.energy.2015.08.087
12 AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle[J]. International Journal of Hydrogen Energy, 2010, 35 (10): 5104- 5113.
doi: 10.1016/j.ijhydene.2009.09.047
13 AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production[J]. Journal of Power Sources, 2010, 195 (8): 2346- 2354.
doi: 10.1016/j.jpowsour.2009.10.075
14 段立强, 张潇元, 杨勇平, 等. 基于分析的CO2零排放SOFC复合动力系统研究[J]. 工程热物理学报, 2011, 32 (5): 745- 749.
DUAN Liqiang , ZHANG Xiaoyuan , YANG Yongping , et al. Exergy analysis of zero CO2 emission SOFC hybrid power system[J]. Journal of Engineering Thermophysics, 2011, 32 (5): 745- 749.
15 CHITSAZ A , HOSSEINPOUR J , ASSADI M . Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; a comparative study[J]. Energy, 2017, 124, 613- 624.
doi: 10.1016/j.energy.2017.02.019
16 DUAN Liqiang , HUANG Kexin , ZHANG Xiaoyuan , et al. Comparison study on different SOFC hybrid systems with zero-CO2 emission[J]. Energy, 2013, 58, 66- 77.
doi: 10.1016/j.energy.2013.04.063
17 OZCAN H , DINCER I . Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification[J]. International Journal of Hydrogen Energy, 2015, 40 (24): 7798- 7807.
doi: 10.1016/j.ijhydene.2014.11.109
18 KHANI L , MAHMOUDI S M S , CHITSAZ A , et al. Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell[J]. Energy, 2016, 94, 64- 77.
doi: 10.1016/j.energy.2015.11.001
19 CHATRATTANAWET N , SAEBEA D . Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches[J]. Energy, 2018, 146, 131- 140.
doi: 10.1016/j.energy.2017.06.125
[1] ZHANG Lei, SUN Feng-zhong*, GAO Ming. Quantitative analysis method for specific effect of crosswind on
performance of natural draft wet cooling tower
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 98-103.
[2] YU Ze-ting,HAN Ji-tian,WANG Zhen . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 28-31 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[2] ZHANG Cheng-hui,NING Yong,JI Peng . Improved FCM clustering algorithm and its application inred tide prediction[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 1 -4 .
[3] LUO Yun-hu,WU Xu-wen,PAN Shuang-lai,DONG Er-ling,SUN Xiu-juan,WANG Chuan-jiang,WU Na . Coordination of two kinds of interruptible loads of demand side and reserve capacity of generation side[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 66 -70 .
[4] XU Nu-Wen, TANG Chun-An, ZHOU Ji-Fang, TANG Lie-Xian, LIANG Zheng-Shao. Numerical simulation of rockburst on the drain tunnel in  the Jinping Second Level Hydropower Station[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 134 -139 .
[5] . The magnetic glass state in the magnetocaloric material Gd5Ge4[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 67 -70 .
[6] WANG Huiqing, SUN Hongwei, ZHANG Jianhui. Time series similarity searching algorithm based on Map/Reduce[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 15 -21 .
[7] ZHANG Hui,WANG Meng-xia, HAN Xue-shan. The advanced thermal rating of power system and its application[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 25 -29 .
[8] LI Jie ,LIU Hong. A method of fractal artistic pattern generation based on a genetic algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 33 -36 .
[9] ZHANG Hong-Bo, HUANG Mao-Song, SONG Xiu-Guang. A  double hardening constitutive model for fine sands based on both the dilatancy feature and strain softening[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 55 -60 .
[10] LI Chun-xiao, YUE Qin-yan, LU Lei, GAO Bao-yu, YANG Zhong-lian, SI Xiao-hui, NI Shou-qing, WANG Yuan-fang. Synthesis and application of  hydrophobically  associating  cationic  polyacrylamide    [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 99 -104 .