Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (5): 17-23.doi: 10.6040/j.issn.1672-3961.0.2019.123

• Engineering—Special Topic on Artificial Intelligence Application • Previous Articles     Next Articles

Transmission network reconfiguration strategy based on preference multiobjective optimization and genetic algorithm

Runjia SUN1(),Hainan ZHU2,Yutian LIU1   

  1. 1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China
    2. Weifang Power Supply Company, State Grid Shandong Electric Power Company, Weifang 261021, Shandong, China
  • Received:2019-03-28 Online:2019-10-20 Published:2019-10-18
  • Supported by:
    国家重点研发计划项目(2017YFB0902600)

Abstract:

This paper proposed a transmission network reconfiguration strategy based on preference multiobjective optimization and genetic algorithm, which incorporated the preferences for different objectives to obtain network reconfiguration schemes. Considering the factors about generators, transmission lines and loads, three objectives were proposed to establish a preference multiobjective optimization model. Considering the preference and discreteness of the model, a preference-based nondominated sorting genetic algorithm Ⅱ was designed. To improve the solve efficiency, the preference-based dominance relation, population sacle control technique and repetitive individual filtration technique were proposed to obtain a preference Pareto solution set with a controllable number of solutions. The simulation results demonstrated that the strategy could reasonably leverage the tradeoff among different factors about network reconfiguration, and the proposed algorithm was highly efficient in solving network reconfiguration optimization problems.

Key words: power system restoration, preference multiobjective optimization, genetic algorithm, NSGA-Ⅱ

CLC Number: 

  • TM732

Fig.1

Flowchart of P-NSGA-Ⅱ"

Fig.2

Flowchart of reference point determining"

Fig.3

The backbone networks obtained by different algorithms"

Table 1

Load data"

节点编号 重要负荷比例
3 0.20
4 0.50
7 0.25
8 0.20
13 0.45
15 0.40
16 0.35
18 0.55
20 0.25
21 0.30
23 0.40
24 0.35
25 0.30
26 0.20
27 0.25
28 0.50
29 0.20

Table 2

Generator start-up sequence and objective values"

方案编号 机组启动顺序 f1 f2 f3
1 34, 36, 35, 31, 37, 32, 38, 30 5.642 6 0.123 8 0.336 7
2 34, 36, 35, 31, 37, 32, 38, 30 5.661 5 0.129 6 0.3279
3 34, 36, 35, 38, 37, 32, 31, 30 5.500 0 0.130 0 0.3279

Table 3

Results of network reconfiguration optimization"

方法 f1 f2 f3 In
本研究 5.642 6 0.123 8 0.336 7 0.893 1
MILP[15] 5.756 0 0.109 5 0.323 9 0.892 5
TCSN[16] 5.600 3 0.102 5 0.319 9 0.900 9

Fig.4

The convergence curves of different algorithms"

Fig.5

Solution distribution with different reference points"

1 SUN R , LIU Y , WANG L . An online generator start-up algorithm for transmission system self-healing based on MCTS and sparse autoencoder[J]. IEEE Transactions on Power Systems, 2019, 34 (3): 2061- 2070.
2 刘玉田, 孙润稼, 王洪涛, 等. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报(工学版), 2019, 49 (5): 1- 8.
LIU Yutian , SUN Runjia , WANG Hongtao , et al. Review on application of artificial intelligence in power system restoration[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 1- 8.
3 刘玉田, 王洪涛, 叶华. 电力系统恢复理论与技术[M]. 北京: 科学出版社, 2014.
4 NAGATA T , SASAKI H , YOKOYAMA R . Power system restoration by joint usage of expert system and mathematical programming approach[J]. IEEE Transactions on Power Systems, 1995, 10 (3): 1473- 1479.
5 LIU Y , SUN P , WANG C . Group decision support system for backbone-network reconfiguration[J]. International Journal of Electrical Power & Energy Systems, 2015, 71, 391- 402.
6 LIN Z , WEN F , XUE Y . A restorative self-healing algorithm for transmission systems based on complex network theory[J]. IEEE Transactions on Smart Grid, 2016, 7 (4): 2154- 2162.
7 宋坤隆, 谢云云, 殷明慧, 等. 应用网络流理论的停电系统恢复路径混合整数线性优化模型[J]. 电力系统自动化, 2017, 41 (3): 25- 32.
SONG Kunlong , XIE Yunyun , YIN Minghui , et al. Cooper-ative frequency control strategy for wind farm black-start based on virtual inertia[J]. Automation of Electric Power Systems, 2017, 41 (3): 25- 32.
8 魏智博, 刘艳, 顾雪平. 基于DPSO算法以负荷恢复为目标的网络重构[J]. 电力系统自动化, 2007, 31 (1): 38- 42.
WEI Zhibo , LIU Yan , GU Xueping . DPSO algorithm based network reconfiguration of power system for maximizing load recovery efficiency[J]. Automation of Electric Power Systems, 2007, 31 (1): 38- 42.
9 王洪涛, 刘玉田. 基于NSGA-Ⅱ的多目标输电网架最优重构[J]. 电力系统自动化, 2009, 33 (23): 14- 18.
WANG Hongtao , LIU Yutian . Multi-objective optimization of power system reconstruction based on NSGA-Ⅱ[J]. Automation of Electric Power Systems, 2009, 33 (23): 14- 18.
10 张雪丽, 梁海平, 朱涛, 等. 基于模糊机会约束规划的电力系统网架重构优化[J]. 电力系统自动化, 2015, 39 (14): 68- 74.
ZHANG Xueli , LIANG Haiping , ZHU Tao , et al. Optimization of power network reconfiguration based on fuzzy chance constrained programming[J]. Automation of Electric Power Systems, 2015, 39 (14): 68- 74.
11 曾顺奇, 文福拴, 薛禹胜, 等. 计及操作时间不确定性的电力系统网架重构策略优化[J]. 电力系统自动化, 2011, 35 (23): 16- 21.
ZENG Shunqi , WEN Fushuan , XUE Yusheng , et al. Optimization of network reconfiguration strategy for power systems considering operating time uncertainty[J]. Automation of Electric Power Systems, 2011, 35 (23): 16- 21.
12 BEN SAID L , BECHIKH S , GHEDIRA K . The r-Dominance: a new dominance relation for interactive evolutionary multicriteria decision making[J]. IEEE Transactions on Evolutionary Computation, 2010, 14 (5): 801- 818.
13 DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
14 MOLINA J , SANTANA L V , HERNANDEZ-DIAZ A G , et al. G-dominance: reference point based dominance for multiobjective metaheuristics[J]. European Jorunal of Operational Research, 2009, 197 (2): 685- 692.
15 ZHANG C , LIN Z , WEN F , et al. Two-stage power network reconfiguration strategy considering node importance and restored generation capacity[J]. IET Generation, Transmission & Distribution, 2014, 8 (1): 91- 103.
16 SUN W , LIU C , ZHANG L . Optimal generator start-up strategy for bulk power system restoration[J]. IEEE Transactions on Power Systems, 2011, 26 (3): 1357- 1366.
17 LIU Y , GU X . Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization[J]. IEEE Transactions on Power Systems, 2007, 22 (3): 1267- 1274.
18 VAN VELDHUIZEN D A, LAMONT G B. On measuring multiobjective evolutionary algorithm performance[C]// 2000 Congress on Evolutionary Computation. La Jolla, CA, USA: IEEE, 2000: 204-211.
[1] Xueping GU,Chao YANG,Haiping LIANG,Yuanbo WANG,Shaoyan LI. Optimization method for parallel coordination restoration strategy of asynchronous power grid [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 9-16.
[2] Yutian LIU,Runjia SUN,Hongtao WANG,Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8.
[3] Xiaoyan GONGYE,Peiguang LIN,Weilong REN. Genetic algorithm based on Grefenstette coding and 2-opt optimized [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 19-26.
[4] CHEN Jiajie, WANG Jinfeng. Method for solving Choquet integral model based on ant colony algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 81-87.
[5] WANG Fei, XU Jian, LI Wei, WANG Xinhao, SHI Xiaohan. Rolling optimal dispatch method of wind power based on distributed energy storage system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 89-94.
[6] LIU Debao, WU Yaohua, GUO Yaoyang, WANG Yanyan. Item assignment optimization of automatic picking system based on hybrid picking strategy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 36-44.
[7] DONG Hongbin, ZHANG Guangjiang, PANG Jinwei, HAN Qilong. A clustering ensemble algorithm based on co-evolution [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 1-9.
[8] LIANG Xingjian, ZHAN Zhihui. Improved genetic algorithm based on the dual-mode mutation strategy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 1-7.
[9] SUN Peng, CHENG Shi-qing*, XIE Jing-si, ZHANG Hai-rui. CV-GA-SVM model for predicting the ash fusion point of a mixed biomass [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 108-111.
[10] YANG Qinmin, LIU Hailin*. Dynamic channel allocation modeling and algorithm in cellular networks
based on a genetic algorithm
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 85-90.
[11] LIU Bin, ZHANG Ren-jin. NURBS curve approximation based on annealing genetic algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 96-100.
[12] YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1-7.
[13] WANG Yan-yan, WU Yao-hua, SUN Guo-hua, YU Hong-peng. Research on  picking  order  batching  policy  of  a  distribution  center [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 43-46.
[14] GONG Dunwei, SUN Xiaoyan, REN Jie. Interactive genetic algorithms with tournament evaluation and evolutionary knowledge extraction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 1-7.
[15] WANG Jian, ZHANG Shan. voltage  regulation research of an improved genetic algorithm considering infeasidering infeasibility degree [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] KONG Wei-tao,ZHANG Qing-fan,ZHANG Cheng-hui . DSP based implementation of the space vector pulse width modulation[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 81 -84 .
[2] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[3] LI Xin-Ping, DAI Yi-Fei, HU Jing. Fluid-solid coupling analysis of surrounding rock mass stability and water inflow forecast of a tunnel in a karst zone[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 1 -6 .
[4] SUN Liang. The effect analysis of advanced detection of water interbed by TEM[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 50 -52 .
[5] LUO Yun-hu,WU Xu-wen,PAN Shuang-lai,DONG Er-ling,SUN Xiu-juan,WANG Chuan-jiang,WU Na . Coordination of two kinds of interruptible loads of demand side and reserve capacity of generation side[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 66 -70 .
[6] RUAN Jiu-hong ,LI Yi-bin,RONG Xue-wen,QIU Xu-yun . Study on the lateral locomotion control of ADRC-based high-speed
mobile platform
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 5 -10 .
[7]

L〖AKU¨] Guo-ren,YAN Shu-ming,BAI Shu-feng,JIA Ning,MA Liang

. Impact property research on a new type of guardrail terminal for freeway[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 47 -52 .
[8] WANG Huiqing, SUN Hongwei, ZHANG Jianhui. Time series similarity searching algorithm based on Map/Reduce[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 15 -21 .
[9] JIANG Peng-fei,WANG Zhen . Game analysis of manufacturer and different suppliers[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 117 -119 .
[10] ZHANG Hong-Bo, HUANG Mao-Song, SONG Xiu-Guang. A  double hardening constitutive model for fine sands based on both the dilatancy feature and strain softening[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 55 -60 .