Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (3): 63-72.doi: 10.6040/j.issn.1672-3961.0.2018.345

• Civil Engineering • Previous Articles     Next Articles

Influence rule of foundation pit supporting structure and its adjacent composite foundation distance

Lianxiang LIab(),Lu BAIab,Tianyu CHENab,Xiangkai JIab   

  1. a. School of Civil and Hydraulic Engineering, Shandong University, Jinan 250061, Shandong, China
    b. Foundation Pit and Deep Foundation Engineering Technology Research Center, Shandong University, Jinan 250061, Shandong, China
  • Received:2018-08-11 Online:2019-06-20 Published:2019-06-27
  • Supported by:
    济南市科技计划项目(201201145)

Abstract:

Based on the centrifugal test of the close relationship between the composite foundation and the supporting structure, the PLAXIS software was used to establish a numerical model of the foundation pit with a certain distance between the composite foundation and the supporting structure. This model was used to study the influence of the width of the strip on internal force and displacement of the composite foundation and retaining structure. The results showed that the distance law could be divided into three sections: when the width of the soil strip increased from 0 to 6 m, the axial force of the CFG pile and the pile-soil stress ratio increased, and the obstruction effect was obvious. It was advisable to establish a lateral pressure calculation method that considered the lateral stiffness and the obstruction effect to actively control the displacement. When the width of the soil strip was 6 m to 18 m, the axial force of the CFG pile and the pile-soil stress ratio were steadily reduced. When the width of the soil strip was increased to 18 m or more, there was no longer any influence between the new foundation pit and the existing composite foundation. The research results clarified the design direction of foundation pits under different widths of soil and the safety protection focus of similar foundation pit engineering, which laid a foundation for further establishing the design theory of such foundation pits.

Key words: composite foundation, support structure, strip width

CLC Number: 

  • TU43

Fig.1

Foundation pit of near building"

Fig.2

Geometric expansion numerical model"

Table 1

parameters of CFG model piles and prototype"

桩参数置换率尺寸/mm×mm(×mm)桩间距/mm
模型0.031 320×0.5×350100
原型0.031 3400×14 0002 000
数值模型0.031 3800×14 0003 200

Fig.3

Centrifugal test monitoring pile distribution"

Table 2

Calculation parameters of soil HSS model"

项目Dr干密度γd
(/kN·m-3)
粘聚力
c/kPa
平均粒径
d50/mm
项目天然孔隙比eeminemax内摩擦角
φ
福建砂85%15.900.17取值0.6630.6 1170.95733

Table 3

Component calculation parameters"

部件密度/(kg·m-3)弹性模量/MPa泊松比
支护板2.768.9×1030.33
CFG桩2.768.9×1030.33
褥垫层2.5450.33

Fig.4

Displacement of support structure"

Fig.5

Moment of support structure"

Fig.6

Earth pressure at an excavation depth of 10 m"

Fig.7

Axial force monitoring pile's axial force results"

Fig.8

Surface subsidence"

Fig.9

Moment monitoring pile's bending moment results"

Fig.10

Schematic diagram of the relationship betweencomposite foundation and foundation pit"

Fig.11

Pile 1 axial force and soil strip width relationship"

Fig.12

Peak axial force of piles"

Fig.13

Schematic diagram of soil compressive stress"

Fig.14

Relationship between pile-soil stress ratioand soil strip width"

Fig.15

Relationship of pile displacement and soil strip width"

Fig.16

The relationship between pile displacementand position"

Table 4

Comparison of numerical model settings"

编号组别土条宽度/m上覆荷载/kPaCFG桩
1有桩有载0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24180
2无桩有载0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24180
3无桩无载

Fig.17

Comparison of three groups of model diagrams"

Fig.18

Supporting structure bending moment underdifferent soil strip width"

Fig.19

Displacement of supporting structures underdifferent soil strip widths"

Fig.20

Support structure displacement reduction"

Fig.21

Different side strip width under the supportingstructure side pressure"

Fig.22

Earth pressure redundancy"

Fig.23

Surface subsidence"

1 龚晓南. 广义复合地基理论及工程应用[J]. 岩土工程学报, 2007, 29 (1): 1- 12.
doi: 10.3321/j.issn:1000-4548.2007.01.001
GONG Xiaonan . Generalized composite foundation theory and engineering application[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (1): 1- 12.
doi: 10.3321/j.issn:1000-4548.2007.01.001
2 龚晓南. 复合地基的发展概况及其在高层建筑中的应用[J]. 土木工程学报, 1999, 32 (6): 4- 10.
3 GHANBARI A , TAHERI M . An analytical method for calculating active earth pressure in reinforced retaining walls subject to a line surcharge[J]. Geotextiles and Geomembranes, 2012, 34 (10): 1- 10.
4 杜金龙.邻近基坑桩基性状及计算方法研究[D].上海:同济大学, 2008
DU Jinlong.Research of the calculation method and properties of foundation piles adjacent to foundation pit[D].Shanghai: Tongji University, 2008
5 佟建兴, 闫明礼, 王明山, 等. 刚性桩复合地基侧向土压力试验研究[J]. 岩土力学, 2014, 35 (6): 1572- 1578.
TONG Jianxing , YAN Mingli , WANG Mingshan , et al. Experimental study of lateral earth pressure of rigid pile composite foundation[J]. Rock and Soil Mechanics, 2014, 35 (6): 1572- 1578.
6 李连祥, 符庆宏, 张海平. 基坑工程离心模型试验进展及关键技术[J]. 工业建筑, 2015, 45 (10): 142- 149.
LI Lianxiang , FU Qinghng , ZHANG Haiping . Progress and key technology of centrifugal model tests on foundation pitengineering[J]. Industrial Construction, 2015, 45 (10): 142- 149.
7 李连祥, 符庆宏, 张海平, 等. 复合地基侧向力学性状离心模型试验方案研究与设计[J]. 重庆交通大学学报(自然科学版), 2016, 35 (2): 92- 100.
LI Lianxiang , FU Qinghong , ZHANG Haiping , et al. Research and design of centrifuge model tests on lateral mechanics properties of composite foundation[J]. Journal of Chongqing Jiaotong University(Natural Science), 2016, 35 (2): 92- 100.
8 李连祥, 符庆宏, 张永磊, 等. 基坑离心模型试验开挖方法研究与应用[J]. 岩石力学与工程学报, 2016, 35 (4): 856- 864.
LI Lianxiang , FU Qinghong , ZHANG Yonglei , et al. Research and application of a new excavation method in centrifuge model test on foundation pit engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (4): 856- 864.
9 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报, 2017, 39 (4): 731- 737.
doi: 10.3969/j.issn.1000-0844.2017.04.0731
LI Lianxiang , FU Qinghong , ZHANG Haiping . Progress and key technology of centrifugal model test on foundation pit engineering[J]. China Earthguake Engineering Journal, 2017, 39 (4): 731- 737.
doi: 10.3969/j.issn.1000-0844.2017.04.0731
10 李连祥, 符庆宏, 黄佳佳. 砂土地基和粉质黏土地基基坑悬臂开挖离心模型试验[J]. 岩土力学, 2018, 38 (2): 529- 536.
LI Lianxiang , FU Qinghong , HUANG Jiajia . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground[J]. Rock and Soil Mechanics, 2018, 38 (2): 529- 536.
11 李连祥, 符庆宏. 临近基坑开挖复合地基侧向力学性状离心试验研究[J]. 土木工程学报, 2017, 50 (6): 85- 94.
LI Lianxiang , FU Qinghong . Lateral mechanical behavior of composite ground due to adjacent excavation: Centrifuge model test[J]. China Civil Engineering Journal, 2017, 50 (6): 85- 94.
12 李连祥, 黄佳佳, 符庆宏, 等. 不同置换率复合地基力学性状附加荷载影响规律离心试验研究[J]. 岩土力学, 2017, 38 (增刊1): 131- 139.
LI Lianxiang , HUANG Jiajia , FU Qinghong , et al. Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load[J]. Rock and Soil Mechanics, 2017, 38 (Suppl. 1): 131- 139.
13 李连祥, 黄佳佳, 成晓阳, 等. 刚性桩复合地基与临近基坑支护结构相互影响的离心模型试验[J]. 岩石力学与工程学报, 2017, 36 (增刊2): 4142- 4150.
LI Lianxiang , HUANG Jiajia , CHEN Xiaoyang , et al. Centrifuge model tests on the interaction between rigid-pile composite foundation in the vicinity of a deep excavation and its retaining structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (Suppl. 2): 4142- 4150.
14 黄佳佳.既有复合地基形成机制与支护开挖力学性状研究[D].济南:山东大学, 2018.
HUANG Jiajia. Study of formation mechanism and mechanical properties of existing composite foundation with adjacent excavation[D]. Jinan: Shandong University, 2018.
15 李连祥, 张永磊, 扈学波. 基于PLAXIS 3D有限元软件的某坑中坑开挖影响分析[J]. 地下空间与工程学报, 2016, 12 (增刊1): 254- 261, 266.
LI Lianxiang , ZHANG Yonglei , HU Xuebo . Finite element analysis of a pit-in-pit excavation based on plaxis 3d[J]. Chinese Journal of Underground Space and Engineering, 2016, 12 (Suppl. 1): 254- 261, 266.
16 刘燕, 聂淑敏, 刘涛. 既有地下结构对基坑位移的遮拦效应研究[J]. 岩土工程学报, 2014, 36 (增刊2): 400- 403.
LIU Yan , NIE Shumin , LIU Tao . Sheltering effect of existing subsurface structures on displacement of retaining wall of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Suppl. 2): 400- 403.
17 朱炎兵, 周小华, 魏仕锋, 等. 临近既有地铁车站的基坑变形性状研究[J]. 岩土力学, 2013, 34 (10): 2997- 3002.
ZHU Yanbin , Zhou Xiaohua , Wei Shifeng , et al. Investigation on deformation behaviors of foundation pit adjacent to existing metro stations[J]. Rock and Soil Mechanics, 2013, 34 (10): 2997- 3002.
18 吉庆祥.既有建筑复合地基对邻近基坑性状影响的研究[D].太原:太原理工大学, 2015.
JI Qingxiang. The research on influence to the behavior of adjacent excavation by existing composite foundation[D]. Taiyuan: Taiyuan University of Technology, 2015.
19 江杰,陈俊羽,马少坤,等.船坞基坑开挖对邻近桩基影响的三维数值分析[J].地下空间与工程学报, 2016, 12(增刊1): 246-253.
merical analysis of pile response due to the excavation of foundation pit at dock[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(Suppl. 1): 246-253.
[1] WANG Zhongxiao, CUI Xinzhuang, CUI Sheqiang, ZHANG Lei, CHE Huaqiao, SU Junwei. The influence of soil-cement pile deterioration and modification in salt-water area on road composite foundation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 69-77.
[2] SONG Xiuguang, ZHOU Jian, HOU Yue, GE Zhi, SUN Renjuan. Properties of anti-dispersing pervious concrete [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 60-67.
[3] ZHANG Na1,2, CUI Xin-zhuang1,2*, ZHANG Jiong1,2, ZHOU Ya-xu1,2, GAO Zhi-jun1,2, SUI Wei1,2. Settlement-controlling and pressure-reduction effect of pervious concrete pile  under the action of embankment load [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 80-86.
[4] CUI Xin-zhuang1,2, WANG Cong1,2, ZHOU Ya-xu1,2, ZHANG Na1,2, GAO Zhi-jun1,2. Anti-earthquake mechanism of pervious concrete pile composite foundation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[2] SUN Cong-zheng,GUAN Cong-sheng,QIN Jing-yu,CHENG Chuan . The structure and performances of the electroless Ni-P alloy coating on aluminum alloy[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 108 -112 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92 -95 .
[6] QU Yan-peng,CHEN Song-ying,LI Chun-feng,WANG Xiao-peng,TENG Shu-ge . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 16 -20 .
[7] ZOU Feifei,GUAN Xiaojun,HAN Zhenqiang,SHEN Xiaomin,MA Xiaofei ,LIU Yunteng . hermal simulating experiment and FEM simulation of dynamic recrystallization of 09CuPTiRE steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(5): 17 -20 .
[8] ZHANG Ai-juan. Synthesis of bone-like hydroxyapatite in simulated body fluid[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 86 -90 .
[9] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .
[10] JIA Chao,ZHAO Jian-yu,XU Bang-shu,YUE Chang-cheng,LI Shu-chen . Research on rock soil liquefaction of the Qingshui railway tunnel under dynamic vibration load[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 83 -87 .