Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (2): 47-53.doi: 10.6040/j.issn.1672-3961.0.2018.194
• Machine Learning & Data Mining • Previous Articles Next Articles
CLC Number:
1 |
ASAFUDDOULA M , RAY T , SARKER R . A decomposition-based evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2015, 19 (3): 445- 460.
doi: 10.1109/TEVC.2014.2339823 |
2 |
YANG S , LI M , LIU X , et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17 (5): 721- 736.
doi: 10.1109/TEVC.2012.2227145 |
3 |
MATIAS J , CORREIA A , MESTRE P , et al. Adaptive penalty and barrier function based on fuzzy logic[J]. Expert Systems with Applications, 2015, 42 (19): 6777- 6783.
doi: 10.1016/j.eswa.2015.04.070 |
4 | ELHOSSINI A , AREIBI S , DONY R . Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization[J]. Evolutionary Computation, 2014, 18 (1): 127- 156. |
5 | YANG D , JIAO L , GONG M . Adaptive multi-objective optimization based on nondominated solutions[J]. Computational Intelligence, 2010, 25 (2): 84- 108. |
6 | LIN C H . A rough penalty genetic algorithm for constrained optimization[J]. Information Sciences, 2013, 241 (241): 119- 137. |
7 | MEZURAMONTES E , COELLO C A C . A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2005, 9 (1): 1- 17. |
8 | WANG Y , CAI Z , GUO G , et al. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2007, 37 (3): 560- 575. |
9 |
LEMONGE A C C , BARBOSA H J C , BERNARDINO H S . Variants of an adaptive penalty scheme for steady-state genetic algorithms in engineering optimization[J]. Engineering Computations, 2015, 32 (8): 2182- 2155.
doi: 10.1108/EC-07-2014-0158 |
10 | DEB K . An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 186 (2): 311- 338. |
11 |
CAI Zixing , WANG Yong . A multiobjective optimization-based evolutionary algorithm for constrained optimization[J]. Evolutionary Computation, IEEE Transactions on, 2006, 10 (6): 658- 675.
doi: 10.1109/TEVC.2006.872344 |
12 | WANG Yong , CAI Zixing , ZHOU Yuren , et al. An adaptive tradeoff model for constrained evolutionary optimization[J]. Evolutionary Computation, IEEE Transactions on, IEEE Transactions on, 2008, 12 (1): 80- 92. |
13 |
WOLDESENBET Y G , Yen G G , TESSEMA B G . Constraint handling in multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13 (3): 514- 525.
doi: 10.1109/TEVC.2008.2009032 |
14 | 王勇, 蔡自兴, 周育人, 等. 约束优化进化算法[J]. 软件学报, 2009, 20 (1): 11- 29. |
WANG Yong , CAI Zixing , ZHOU Yuren , et al. Constrained optimization evolutionary algorithms[J]. Journal of Software, 2009, 20 (1): 11- 29. | |
15 | 李智勇, 黄滔, 陈少淼, 等. 约束优化进化算法综述[J]. 软件学报, 2017, 28 (6): 1529- 1546. |
LI Zhiyong , HUANG Tao , CHEN Shaomiao , et al. Overview of constrained optimization evolutionary algorithms[J]. Journal of Software, 2017, 28 (6): 1529- 1546. | |
16 | 张敏.约束优化和多目标优化的进化算法研究[D].合肥:中国科学技术大学, 2008. |
ZHANG Min. Research on evolutionary algorithms for constrained optimization and multiobjective optimization[D]. Hefei: University of Science and Technology of China, 2008. | |
17 | 肖易寒, 李明逵, 陈立伟. 基于改进NSGA-Ⅱ算法的多光谱测温数据处理[J]. 应用科技, 2017, 44 (1): 33- 39. |
XIAO Yihan , LI Mingkui , CHEN Liwei . Multispectral temperature measurement based on improved adaptive NSGA-Ⅱ algorithm[J]. Applied Science and Technology, 2017, 44 (1): 33- 39. | |
18 | 毕晓君, 张磊. 基于自适应ε截断策略的约束多目标优化算法[J]. 电子与信息学报, 2016, 38 (8): 2047- 2053. |
BI Xiaojun , ZHANG Lei . Constrained multi-objective optimization algorithm with adaptive ε truncation strategy[J]. Journal of Electronics & Information Technology, 2016, 38 (8): 2047- 2053. | |
19 | DEB K, PRATAP A, MEYARIVAN T. Constrained test problems for multi-objective evolutionary optimization[C]//Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization, EMO 2001, Zurich, Switzerland: EMO, 2001: 284-298. |
20 | 韩红艳.基于Pareto支配的高维多目标进化算法研究[D].大连:大连理工大学, 2016. |
HAN Hongyan. Research of Pareto dominance based many-objective evolutionary algorithm[D]. Dalian: Dalian University of Technology, 2016. | |
21 | JIANG S , YANG S . A steadystate and generational evolutionary algorithm for dynamic multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (1): 65- 82. |
[1] | Jianping HU,Xin LI,Qi XIE,Ling LI,Daochang ZHANG. An unconstrained optimization EMD approach in 2D based on Delaunay triangulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 9-15, 37. |
[2] | QIAN Shuqu, WU Huihong, XU Guofeng, JIN Jingliang. Immune clonal evolutionary algorithm of dynamic economic dispatch considering gas pollution emission [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 1-9. |
[3] | LIU Dakun, TAN Xiaoyang. Fitting of constrained local model based on manifold [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 31-36. |
[4] | ZHANG Xiao-dan, ZHAO Li, ZOU Cai-rong*. An improved shuffled frog leaping algorithm for solving constrained optimization problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 1-8. |
[5] | SUN Hai-Ying, CHEN Ling. A new approach for solving continuous optimizationusing ant colony optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 24-30. |
|